AUTHOR	Huckenpahler, J. G.; And Others
TITLE	Academic Science, 1972-81: R \& D Funds, Scientists
	and Engineers, Graduate Enrollment and Support. Final
	Report. Surveys of Science Resources Series.
INSTITUTION	National Science Foundation', Washington, D.c. 'Div. of
	Science Resources Studies. \| ${ }^{\text {a }}$
REPORT NO	NSF-81-326
PUB_DATE	Dec 81
NOTE	93p. . - .
AYAILABLE FROM	National Science Foundation', Washington, DC 20550.

EDRS PRICE DESCRIPTORS

'IDENTIFIERS

MFOl/PC04 Plus Postage. Educational Development; Employmient Patterns; *Engineers; Enrollment Trends; *Expenditures; Federal Aid; Females; *Financial Support; 'Foreign. Students; *Graduate Students; Higher Education; National Surveys; Private Finangial Support; *Research; *Scientists; Trend Analysis.
*Research and.Devielopment

ABSTRACT

The results of the 1972-1981 National Science Foundation surveys on academic research and development (R\&D) funds, the employment, and utilization of scientists and engineers, and the characteristics of graduate students enrolled in the sciences and engineering (S/E) are presented. Findings include the following: the steady growth to university S / E employment and graduate, S / E enrollment that characterized the 1970 s was maintained into 1980 , but a downturn in Rif expenditures in real doliars is oćcurring in 1981; acadepic R\&D expenditures from all financial sources accounted for aboút one tenth of the national R\&D total; during the 1977-79 period, nonfederally funded R\&D expenditures at universities and colleges grew at an average annual rate nearly twice that of federally financed R\&D expenditures; as in, earlier years, the.life sciences accounted for more than one-half of all academic R\&D expenditures in. 1979; capital expenditures for S / E activities at universities and colleges fell at an average annual rate of three percent, or nearly 10 percent in constant dollars between 1972 and 1979; the 325,000 scientists and engineers employed in higher education institutions in January 1980 represents a three percent per year increase over: the number employed in 1978; ilife, scientists made up the largest singie group of academic. S $\%$ professionals through the 1973-1980 period; 375,000 students were enrolled in courses of study leading to graduate degrees in S / E, up two percent per year since fall 1977; and women made up 33 percent of the full-time S / E graduate students enrolled in doctorate-granting institutions in 1980, up from 25 percent in 1975: Questionnaires, statistical tables, and technical notes are appended.. (SW)

[^0]
academic science

 1972-81
r\&d funds

scientists and engineers
graduate enrollment
and support

surveys of science resources series

 national science foundation

USS DEPARTMENT OF EDUCATION NATIONAL INSTITUTE OF EDUCATINTON EDUCATiONAL RESOURCES
This document has been reproduced as. carved then organization reciginating it
anal have been made to improve Minor changes have
reproduction quality
Pons opinions stated in this dock
pent do not necessarily represent official NIE
position or policy
"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION.CENTER (ERIC)."
final report
NSF 81-326

related publications

Science Resources Studies Highlights.	NSF No. !
R\&D Funds	
"R\&D̂ Eẍpenditures Increased 3\% in Real Terms at Universities and Colleges in FY 1979" \qquad	81-304
"Federal Academic Science Support Rose By 13\% in FY 1979". S/E Personne!	
"Academic Employment of Scientists and Engineers Increased 6\% Between 1978 and 1980" \qquad	81-315
Detailed Statistical Tables	
R\&DFunds . V	
Academic Science: R\&D Funds, Fiscai Year 1979 S/E Personnel	$81-301$
Academic Science:Scientists and Engineers, January 1980	81-307
Academic Science: Graduatè Enroilment and Support, Fall 1979	80-321.
Reports	
R\&DFunds	
Federal Support to Úniversities, Colleges, and Selected	
Nonprofit Institutions, Fiscal Year 1979	81-308

Avallablility of Publications

Those publicalions marked with a price should be oblained direcliy from the Superintendent of Documents, U.S. Government Printing Office, Washinglon, D.C. 20402. Where no price is listed, single coples may be oblained gratis from the National Science foundation, Washington, D.C. 20550.
(See Inside back coveŕ for Other Sclence Resources Publications.)

foreword

*As the Nation enters another decade, its higher education system fåces a new period of challenges. Declining birthrates have led some authorities to predict a period of enrollment retrenchment accompanied by static or deolining numbers of faculty because of the large number of new tenure-track positions filled by young scholars during the expansion period of the sixties. Even as overproduction of new Ph.'D.'s is feared in some fields, other fields' are likely to encounter shortages because new graduates are not attracted into advanced study. At the same time, a new mood of fiscal conservatism appears in legislative bodies at ḅoth the Federal and State levels.

Universities and colleges have traditionally fulfilled two crucial roles within America's scientific and engineering (S / E) effort. They are the chief suppliers ${ }^{s}$ of S/E personnel so necessary for the national welfare. They also are the largest performer of basic research which provides the foundation for much of our technology. In other developed countries the expansion of knowledge has primarily been the function of either research institutes or government laboratories; in the United Statess the academic community has been much more heavily involved in. the performance of basic research than either of the other types of organizations.

Decisions of State'and Federal legislators, budget officials in the executive branches of all levels of government, and administrators in un versities and colleges and educational organizationsall depend upon the availability of data on the various characteristics of academic S/E programs. It is the purpose of this report to provide such data. It is the second in a seriets of biennial publications analyzing data collected in the National Science Foundation's (NSF's) surveys of academic R\&D expenditures, the employment and utilization of scientists and engineers, and the characteristics of graduate students enrolled in the sciences and engineering. These reports replace the earlier series of annual publications which presented the results of each of the three surveys separately. The revised format - is intended to facilitate analyses by intégrating data from more than one survey serieqs, as well as providing some comparisons with statistics derived from other sources. Any comments or suggestions for improvements in the data presentation will be welcome.

Charles E. Falk
. Dire̊ctor, Division of Science Resources Studies National Science Foundation Directorate for Scientific, Technological, and International Affairs

[^1]
notes

- The abbreviation " S / E " refers to "science and engineering."
- Unless constant dollars are specified. data for research and development and capital expenditures are shown in current dollars. When constant dollars are discussed. they repręsent an adjustment to the 1972 level and are converted to a fiscal-year basis. The gross national product (GNP) implicit price deflator prepared by the Department of Commerce is used as the basis for the conversion. (See table A-3 for actual valués.)
- Data in part 1 cover fiscal years (FY's). data in part 2 are collected as of January in each year: data in pay 3 are collected as of fall in each year.
- During ke 1978-79 survey cycle, an attempt was made to collect some data items on a short form : malled to doctorate-granting institutions only. FY 1978 expenditures data. January 1979 personnel data, and fall 1978 graduate student data are therefore μ navailable for, all institutions, although an estimate was made for total FY 1978 expenditures at nondoctorate-granting institutions. In addition. no data are available for those items excluded from the short forms, e.g., capital expendio tures, fulltime-equivalent (FTE) scientists and engineers, and support mechanisms of graduate students. These data gaps are reflected, in the text and in detailed statistical tables.
- Appendix tables àt the end of this report áre designed to provide the detailed data shown in the charts. Tabulations based on NSF survey findings have been compiled from the most recent publications, and data are subject to revision in subsequent years.
-s
- Details shown in appendix tables may not add to totalsbecause of rounding.
- For longer ferm and more detailed analyses. refer to data tabulated and illustrated in theppublications listed on cover 2 of this report.

For information on the availability of data tapes, contact:
J. G. Huckgnpahler

- Division of Science Resources Studies National Science Foundation 1800 G Street N.W.
Room L-602
Washington, D.C. 20550
202-634-4673

acknowledgments

This report was preparèd in the Universities and Nonprofit Institutions Studies Group of the Division of Science Resources Studies by J. G. Huekenpahler, under the direction of Penny D. Foster. Study Director. James Hoehn and Richard Bernof assisted in the preparation of the report; statistical assistance was provided by M. Margaret Machen. William L. Stewart. Head of the R\&D Economics Studies Section, and Charles E. Falk, ${ }^{\text {, Director. Division of Science Resources Studies, provided }}$ general guidance and review. Numerous university and college officials provided the essential annual statistics for the threemajor NSP surveys of academic science and engineering that form the basis for this analysisn:

contents
 1.

page
Highlights 1
Part 1. Trends in Academic R\&D' Expenditures 3.
General Characteristics, 1972-81 3
Detailed Characteristics, 1972-79 4
-The Federal Role 5
${ }^{4}$ Fields of Science/Engineering 6
Institutional Control 7
Geographic Distribution 8
Capital Expenditures for Research, Development, and Instruction 9
Part 2. TrendsinAcademićS/EEmployment 10
General Characteristics, 1973-80 10
.Comparison of Academic Sector Employment Patterns With Other Sectors 11
Employment Status 12
Type of Activity 43
Type of Institution 14
Sexof Scientists and Engineers, 1974-80 15
Minorities,'1973-79 16
Postdoctorate Utilization 17
Part 3. Trends in Graduate S/E Enrollment $\therefore 20$
General Characteristics, 1975-80 20
Enrollment and Degree Patterns, 1975-79 20
Full-time Graduate Si Enrollment in Doctorate-Granting Institutions 24
Sources of Support 24
Mechanisms of Support 24
Women in GraduateS /E Programs 25
Foreign Graduate Students ' 27
Part-timeGraduateS/E Enrollment in Doctoraṭe-Granting Institutions 28
Appendixes:
A. Technical Notes 32
B. Statistical Tables 37
C. Reproduction of Survey Instruments, FY 1979 63

highlights

- This summary report presęnts data from three surveys conducted annually* by NSF. Expenditures data are collected on a fiscal-year basis and are available for 1972-79 (with preliminary data for 1980); personnel data are available for January 1973 through' January 1980; and data on graduate enrollment are collected as of fall of each year from 1975 through 1979.

overall trends

- The steady growth to university S / E employment and graduate S/E enrolment, that characterized the seyenties was maintained into 1980, but a downturn in $R \& D$ expenditures in real dollars is occurring in 1981.
- Although only about 1 in 10 institutlons of higher education granted doctorate degrees in S/E fields, this comparatively small group (about 320 institutions) accounted for the majority of all S/E activities. Doc-torate-granting institutions accounted for 98 percent of all ácademic R\&D expenditures in 1980 and received nearly 97 percent of all Federal obligations for S/E activities. These same institutions employed 67 percent of all academic scientists and engineers and enrolled 87 percent of all S / E graduate students.

r\&d
 expenditures

- Academic R\&D expenditures from all financial sources accounted for about one-tenth of the national R\&D total. They reached an estimated $\$ 6$ -billion in 1980, up 15 percent from the 1979 amount, equivalent to 6 percent growth in constant-dollar terms. From 1972 to 1980, R\&D funds at universities and colleges grew at an average annual rate of 11 percent, or 3 percent in constant dollars. Estimates for 1981, however, indicate a growth of 6 percent over 1980 , which in real-dollar-terms means a decline of nearly 4 percent.
- During the 1977-79 period, nonfederally funded $R \& D$ expenditures at universities and colleges grew at an average annual rate nearly twice that of federally financed $R \& D$ ex-penditures-7 percent per year compared to 4 percent per year in constant dollars. These growth rates. are considerably higher than the cotmparable rates for the 1972-79 period as a whole (4 percent per year and 2 percent pér year, respectively): The most rapid growth between 1977 and 1979 was that of industrially supported R\&D expenditures (10 percent per year in
constant dollars); but industrial firms in 1979 still supplied only about 4 percent of all funding for academic R\&D expenditures.
- As in earlier years, the life sciencés accounted for more tharone-half of all academic. R\&D. expenditures in 1979. The environmental sciences, however, grew at the most rapid rate during the 1977-79 period, more than 12 percent per year. The life sciences, engineering, and the mathematical/computer sciences all.grew at rates of between 10 percent and: 11 percent pèr year.
-. Capital expenditures fó S / E activities at universities and colleges fell at an average annual rate of 3 percent, or nearly 10 percent in constant dollars, between 1972 and 1979. In 1980, however, total capita ${ }^{2}$ expenditures rose 13 , percenf(nearly 5 percent in constant dollars). Although the drop in federally financed capital expenditures continued into 1980, funding for capital expenditures from other sources increased by 20 percent.

academics/e personnel

- The 325,000 scientists and engineers employed in institutions of higher
education in January 1980 represented a 3-percent per year increase over the number employed in 1978. This is almost identical to the average. annual growth rate for the whole 1973-80 period. Full- and part-time employment grew at almost identical rates between 1978 and 1980, in marked contrast to the eaillier years when part-time employment grew three times as fast as full-ime emplayment (6 percent compared to 2 percent per year). Virtually all the 1978-80 increáse in S/E employment took place in doctorate-granting institutions; the number of scientists and engineers employeđ̈ in master'sgranting institutions actually declined slightly.
- Life scientists made up the largest single group of academic S/E professionals throughout the 1973-80 pe riod, accounting for about 40 per- cent of all S/E employment in,each year. Between 1978 and 1980 the number of life scientists grew at an average ansual rate of 4 percent, slightly abque the 3-percent average for the 7 -year period as a whole. Mathematical/computer scientists were the fastest-growing group for the entire period, however, increasing by nearly 5 percent per yéar, though between 1978 and 1980 the rate dropped to 4 percent per year. Engineers increased at at 3-percent average annual rate over the 7 -year period, but by more than 4 percent per year between 1978 and 1980. The number of academically employed physical scientists rose at the slowest ess than 2 percent per.year the entire period, and by
only 1 percent per year between 1978 and 1980.
- The $57,1,00$ FTE scientists and engineers engaged in research and development in 1980 represented an average increase of only 1 percent per year over the number in 1978. This rate of growth was considerably lower than the nearly 5 -percent-per-year growth in academic $R \& D$ expenditures during the same period, and when considered in conjunation with the 5 -percent-peryear increase in graduate research assistants, it indicates an increasing tendency @or,universities to rely on support personnel for the conduct. of research. The average annual growth in FTE's in other activities between 1978 and 1980 was 2 percent.

graduate s/e students

- In fall $1979,375,000$ students were enrolled in courses of study leading to graduate degrees in the sciences and engineering, up 2 percent per year since fall 1977. Preliminary data from the fall 1980 survey indicate another rise of nearly 3 percent between $19 \hat{79}$ and 1980. These increases in S/E enrollment run counter to the trend in nonscience.graduate enrollment, which fell by almost onefourth during the 1975-79 period. The proportion of all graduate students
enrolled in S' ${ }^{\prime}$ E programs at doc-torate-granting institutions rose from 23 percent to 39 percent during those years.
- Growth of graduate student entollment in various fields of science was near the overall 1977-79/average, mathematics/computer sciehces and engineering being slightly above average, while the physical sciences were slightly below.
- Women 'made up 33 percent of the full-time S/E graduate students enrolled in doctorate-granting institutions in 1980, up from 25 percent in 1975. This represents an average. annual growth of 8 percent per year (7 percent between 1979 and 1980). The number of women enrolled for graduate study in engineering increased by 17 percent per year during the 1975-80 period, compared with an average anmual growth rate of 6 percent in the social sciences. Between 1979 and 1980, these growth rates were 14 peŕcent and 6 percent, respectively.
- The numbèr of foreign students enrolled in graduate programs grew by 8 percent per year between 1975 and 1980, and by 9 percent between 1979 and 1980. They accounted for an increasing proportion of full-time S.'E graduate enrollment-20 percent in 1980, up from 16 percent in 1975. The largest number of foreigners - were enrolled in engineering, where they comprised 42 percent of the engineering total. Foreigners also accounted for 30 percent of all graduate students enrolled in the math. ematical/computer sciences.

part 1.

trends in academic r\&d expenditures

general characteristics, 1972-81

R\&D expenditures data analyzed in detail in this report are derived from annual NSF surveys of S/E activities at all universities and colleges with S/E graduate programs. The surveys cover all institutions in FY's 1972 through 1977 and 1979 and only doctorate-granting. institutions hr 1978. Estimated data for \cdot 1980 are based on early returns from the subsequent survey cycle, and 1981 estimates have been derived from the annual NSF report analyzing natiönal patterns'of R\&D resources: ${ }^{1}$ Acgording to these estimates, academic institutions' performance of research and develop.ment accounted for about \$0billion; or 10 -percent of total allocations for research and development in the United States in 1980, and the proportion in 1981 is expected to be about the same, or $\$ 6.3$ billion out of $\$ 69.1$ billion (table B-1 and chart 1).

[^2]

An examination of the role of academic institutions inthe performánce of all types of research and development, however, tends to obscure the significant involvement of universities and colleges in the performance of basic research. It is estimated that academic institutions' performance accounted for about one-half of every'dollar allucated to basic research in the United States in 1980 (table B-2 and chart 2). University-administered federally funded research and development centers (FFRDC's) accounted for an additional 10 percent of the total.

These amounts understate the total R\&D performance of the academic * sector of the economy, since data collected, in the annual NSF university and college expenditure surveys are limited tu separately budgeted R\&D expenditures. The dccounting procedures adopted by most universities and colleges combine the costs of instruction \therefore and departmental research because of the inherent difficulty in measuring them separately. Amounts spent on departmental' research alone, therefore, cannot be adenified.

Although the growth in academic R\&D expenditures averaged 11 percent per year between 1972 and 1980 , or 3 percent per year in' real dollars, the. rates of increase accelerated in the late seventies andrreacfed 15 percent be, tween 1979 and 1980, or, 6 percent in constant dollars. On the basis of estimates prepared for National Patterns of Science and Technology Resources, an abrupt shift is expected for 1981 , down to 6 percent in current dollars,* equivalent to a decline of almost 4 percent in constant-dollar terms.

Academic expenditures for basic research grew during the 1972-80 period at an average annual rate of 9 percent (or 2 percent in constant dollars), somewhat less than the 11-percent average annual growth in industrial basic research funding and the 10 -percent averdge annual growth for all basic research expenditures in the United States. Preliminary data show a 14 -percent growth in academic expenditures for basie research between 1979 and 1980 , but only a 6-percent growth estimated for 1981. In constant-dollar terms, this translates to alise of 5 .percent followed by, a, 4percent decline.

detailed characteristics, 1972-79

- During the 7 -y ear period 7972 through 1979 examined in detail in this section of the report, expenditures for basic research by institutions of higher education rose from $\$ 2.0$ billion do $\$ 7.6^{6}$ billion, for an average annual growth of 8 percent. This growth was almost entirely erased by the effects of inflation; in real terms the increase averaged 1 pepcent per year. ${ }^{2}$ University and college expenditures for applied research and development grew during the same period at an averge annual rate of 15 percent (7 percent in real dollars), reflecting a shift in emphaṣis toward shorter term objectives during the period of budgetary constraints (table B-3 and chart 3) Since there is an inherent uncertainty of success accompanying any investment in basic research, it is becoming evident that there ism a time of rising fiscal conservatism an increasing reluctance on the part of institutions to concentrate significant funding in what are often viewed as high-risk venturès. The amount allocated to basic research, whigh represented 7 percent of all academic $\mathrm{R} \& \mathrm{D}$ expenditures in 1972 , fell to a low of 68 percent in $19: 6$ and has smbe remained stable at 69 percent

Although the Federal Government remains the largest single source of funding for academic research and devełopment, the 66-percent share of all academic $R \& D$ expenditures funded by the Federal Gqvernment in 1979 marks a steady decline from the $69-$ - percent peak funded from Federal sources in 1973.

During that 7 -year period, the Federal Government increašed its funding for academic research and development by 91 percent. Funding by nonprofit organizations to universities and colleges is estimated to have doubled. Funding from industrial organizations rose by 160 percent, but industry still remained

[^3]
the smallest source of academic $R \& D$ fugds throughout the period. never accounting for more than 4 percent of the total.
During the se venties there was a slight change in the distribution of academic R\&D expenditures among fields of science and engineering The life sciences, .whichaccounted for one-half of the 1972 total, increased this relative lead over the remaining fields to 54 percent in I 1979 Engineering and the environmental sciences also grew slightly as proportions of the total, while the physical sciences, social sciences, and psychology accounted for smaller shares in 1979 than in 1972. These changes in funding patterns will be examined in greater detail in the next two subsections.

the federal role

The Federal Government, the chief supporter of açademic desearch and - development in recent years, began financing academic R\&D activities during the last century with the funding of agricultural research at land-grant
colleges. It was not'until World War It that Federal funds became significant in the support of academic research and development. At that time the im„mediate need for sophisticated weap-- onry quickly raised the War and Navy Departments to leading positions among the Federal supporters of academic research, subsequently, the gradual shift in national priorities from defense to health needs brought the Department of Health, Education, and Welfare (HEW) into the leading position it maintained throughout the period under consideration.

In annual, NSF surveys of Federal agencies, the latest of which covers FY 1979 obligations, ' HEW has reported about one-half, or more, of all Federal funding for academic research and de-- velopment since 1974. NSF ranked second throughout the 1974-79 period, accounting for between 15 percent and 18 percent of the academic R\&D total, folluwed by the Department of Defense (DOD) which reported between 9 percent and 14 percent of the total. In all, six agencies-these three plus the De-

Fartment of terwiltur mad Energ (DOE) and the NationdTherunatical

 -Tal dhllitr allowatedthaddemm $R \notin D$ activitues (table B-4 and chart 4).'

Federally funded academic R\&D' ex--penditures grew at a slower rate during the 1972-79 period than did nonfederally financed researeh and development in academic institutions (table B-5 and chart 5). In constant dollars, the average annual rate of growth in federally financed research and development over the entire period was only 2 percent.

The growth rate of nonfederally financed açademic $R \& D$ activities varied noticeably from that of Federal funding. Between 1972 and 1973 real growth in nonfederally financed research and development was 3 percent, only onehalf that of Federal funding; during the 19:3-" periud, however, the real grunth rate was 2 percent, and during the $14^{--}-9$ pertond t was mure than 6

Natonal Science Foundation. Federal Support to Universities. Colleges, and Selected Nonprofit Institutons. Fiscul Year 1979. A Report to the President and Congress (NSF 81-308) (Washingion. D C Supt of Documents, US Government Printing Office. 1981).

percent Real-qoilar academic R\&D expenditures de dined in only une y ear (1974) and over the entire period maintained ant average annual grouth rate of 3 percent.
"Institutions' own funds"-a category which includes unrestricted gifts and grants-was the second largest source of R\&D expenditures, ranging between 11 percent and 14 percenj of the total belween 1972 and 1979. State and local governments have supplied about 10 percent of all academic \cdot R\&D funding since 1972. As indicated earlier, industry was the fastest growing source of acàdemic R\&D expenditures, but because of the relatively small amounts involved this did not affect the overall * distribution significantly.

fields of science/ engineering

All major S^{\prime} E fields shared in the: 1972-79 growth in academic R\&D expenditures in current dollaŕs; how̄ever, when the effects of inflation were taken into account, the growth was limited to the so-called "hard" sciences-the life sciences, environmental sciences, and ${ }^{*}$
the physical'sciences - and the mathematicalicumputer sigiences and englneering. The most rapid growth occurred in academic funding for the envirọnmental-sciences-up, 12 percent per year in current dollars. The annual. R\& D gron th rates for the mathematical ${ }^{\prime}$ cumputer sciences and the life sciences and engineering were almost identical at 11 percent per year, while the p. hysical sciences showed an 8 -percent-peryear growth in funding. The social sciences and psychology each grew by 5 percient per year (tables B-6 and B-7 and chart 6).

The life sciences retained their lead over the other broad fields and, accounted for 54 percent of the total in 1979. The other fields likewise generally retained their relative rankings throughout the period. Engineeringrand the environmental stiences also increased their sharés of the total slightly, while psybhology and the social sciences ascountedfor simaller proportions in 1979 than in 1972 (chart 7).
The phy sical sciènces ranked first in terms of the proportion of total funding received from Federal sources, and the social sciences last (chrart 8). Tu

some extent, this may result from the far higher equipment costs involved in research in the physical sciences, but it is alsu. a reflection of the relative priurities of the major fünding agencies,

especially mission-oriented agencies such as HEW, DOD, and NASA.

insțityutioñal control

Although private universities and colleges outnumbered those under public control in 1979-1.702 to 1,488 the latter accounted for 65 percent of. all federally financed R\&D expendi: tures. The dollar gap between public and private institutions in terms of R\&D expenditures has widened during the 7-year period tinder consideration. In 1972 public universities accounted for 62 percent of all academic $R \& D$ expenditures. Since that time the proportion of the total spent by public institutions has hovered around 65 percent. While the R\&D expenditures of publicly controlled institutions increased at an

[^4]average annual rate of 11 percent between 1972 and 1979 (4 percent in constant dollars), the comparable rate for 'private institutions was 9 percent, or 1 percent in constant dollars (table $\mathrm{B} \approx 8$ and chart 9).

The discrepancy between the relative numbers of public and private institutions and the proportion of total $R \& D$ expenditures accounted for by each group is to a large extent a function of the number of major research institutions within each group. The publicly controlled group included a Kigher number of institutions in the survey of $R \& D$ expenditures than did the group under private control: 22 percent of the public institutions, reported R\&D expenditures, but only 14 percent of the private institutions did so Among.the institutions surveyed, those granting the doctorate -degree accounted for 98 percent of the R\&D expenditures, and 59 percent of these = doctorate-granting institutions were under public control.

Thé Federal Government supported a lower proportion of all $R \& D$ expenditures at publisly controlled universities and colleges thàn at those under private control (61 percent compared to 76 per-

distribution of $R \& D$ expenditures by character of Work. Among pyblic institutions, 63 percent of the total was allocated to basic research, while private institutions allocated a much bigher proportion-80 percent (table B-9 and cbart 10).

13

Ther trpe of inatituthond iontral made hitte detference in the distrabution amone fields of reserarth (Anlv in the phatid dad enviranmental bltantes were there shaght difterences hetwern
 or less).

geographic distribution

All geographic divisions of the country participated in the growth in academic R\&D expenditures during the $1972-79$ period, with much higher rates of growth in the "sun belt" States of the South and West than in the more northerly regions. This-sjtuation results largely from recent shifts in population and económic aclivity in general. R\&D expenditares of institutions in the West South Central States increased at an average annual rate of 14 percent while those of instftutions in the East South Céntral Division grew by 12 percent per vear At the nither end of the spectrum the R\&D) expenditures of institutunu in the Viddlle Allantic States grew by less than y percent per year, and the 7-percent annual growth rate of 'institutions in the outlying áreas was barely sufficient to keep pace with inflation (table B-10 and chart 11). The West South Central States also showed the highest growth rate in terms of federally funded $R \& D$ expenditures, 13 percent, and the West, North Central and Middle Atlantic'States the lowest, 8 percent (table B-11).

A State-by-State examination of academic $R \& D$ expenditures points up the concentration of $R \& D$ expenditures more clearly. California led the Nation, as it has through8ut the 1972-79 period, in both total' and federally financed R\&D expenditures, followed by New York, Massachusetts, and Texas (chart 12). It is noteworthy that each of these States, includes at least one locality with a high concentration of leading universities in terms of both staff and facilities. In California, for example, both the San Francisico and Los Angeles Standard Metropolitan Statistical Areas (SMSA's) have several large universities, as did the SMSA's in the other leading StatesNèw York City, Bosion, and Dallas-Fort Worth.

Chart 12. R\&D expenditures at universities and colleges by State: FY 1979

capital expenditurès for research, development, and instruction

In addition to the $\$ 5.2$ billion from current operating funds which institutions of higher education allocated to R\&D activities, another $\$ 730$ million went into capital èxpenditures for S / E research, development, and instruc-tion-the smallest amount of any year since 1972. The 1979 total represented only 70 percent of the 1976 peak, for an average annual real-dollar decline of 8 percent.

The Federal Government was the source of 23 percent of the 1979 capital expenditures reported, down fróm 27 percent of the 1973 total (table B-12 and chart 13). During the midsixties, support of academic research facilities and instrumentation grew at an unprecedented pace as a number of agencies implemented or expanded programs for the support of R\&D plant in response to initiatives onthe part of the Administration. During the seventieg, however, investment in R\&D plant declined. sharply. Concern over growing difficulties in maintaining and replacing obsolete S / E equipment and instrumentation resulted from a number of independent and governmental studies. ${ }^{5}$

[^5]

AcademictraD plant support by the Federal Government in 1979 remained at only one-fourth (about one-tenth in real dollars) of its 1965 amount. ${ }^{\text {. }}$
The distribution of capital expenditures by field was not substantially different - from that of current $R \& D$ expenditures. The life sciences again receivèd by far the largest amount, 63 percent of the total. Engineering ranked 'second with 13 percent, followed by the physical sciences with 9 percent (chart 14).

${ }^{\circ}$ National Sçence Foundation. Federal Support to Universities, Colleges, and Selected Nonprofit Institutions. fiscal Year 1979, op cit

part 2.

trends in academic s/e employment

general characteristics; 1973-80

'During the period January 1978 through January 1980, employment of scientists and engineers at universities and colleges rose by an average of 3 percent per year, the same rate of growth as for the entire 1973-80 period. ${ }^{7}$ Fulltime S/E professionals, who represented about four-fifths of all academic S/E employment throughout the 7 -year period, increased their ranks by an annual average of over 2 percènt. Parttime employment grew, however, at more than twice the full-time rate, but its share of total academic S/E employment rose by only 3 percentage points, from 18 percent to 21 percent during this period (table B-14 and chart 15).

[^6]

The 1973-80 overall increase of 23 percent in the number of scientists and engineers employed in academia was reflected in all disciplines, at rates ranging from 45 -percent in the mathematical/computer sciences to 11 percent
in the physical sciences (table B-14 and chart 16). This growth in academic employment occurred despite a net decline of 7 percent in the total number of doctorate S/E degrees awarded annually during the comparable period

(table $\mathrm{B}-15$). ${ }^{\text {. }}$ The total number of doctorates a warded in S/E disciplines in the deademic year ending June 1979 exceeded the number awarded in the year ending June $19: 2$ in unly two fields, psychology and the life sciences. The declining number of doctorates granted annually in some fields illustrates the comparative drawing power of industrial and other secturs of employment for bachelor's- and master's-degree holders, especially in the computer and physical sciences and engineering.
Throughout the 1973-80 period, the largest group of academic scientists and engineers has been thuse in the life sciences - about 40 percent of the totalfollowed by the social sciences with about 17 percent. Mathematical/computer scientists, engineers, and physical scientists each comprised about 10 percent of the total. The predominance of the life sciences is consistent with the preponderance of total $R \& D$ expenditures aH/bcated to this area, but this
"Based on National Research Council's Summary Reports, Doctorate Recipients from United States Universitues. annual series. fune 1972 through june 1979. table 1
relationship does not hold in the case of the social sciences: R\&D funding for the social sciences made up only 6 percent of all R\&D expenditures in 1979. In cumparisun with the number of academic persunnel employed in this area, "this level of R\&D funding is traceable primarily to the extremely low equipment costs generally associated with social science research.
The life sciences, in addition to accounting for about two out of every five scientists and engineers employed in universities and colleges, represented over one-third of the net growth in the employment of academic scientists and engineers in the 1973-80 period. Life scientists, mathematical/computer scientists, and social scientists together accounted for nearly three-fourths of the total net growth.

comparison of academic sector employment patterns with other sectors

Thére has been a discernible trend in the seventies toward a lower rate of growthof employment of scientists and engineers within the academic sector
than within the industrial sector Be tween 1976 and 1978 , the mumber of S / E personnelineducationalanstitutions grew by less than 3 percent compared to 7 percent in industry, and remained stable in the Federal Guvernment and other sectors. In the 1974-76 period. however, employment of scientists and engineers grew by 9 percent in both the educational and Federal Government sectors, 8 percent inf nonprofit organizations, and only 4 percent in the industrial sector"
The sudden relative spurt in industrial S/E employment is partially the result of the postrecession economic recovery that occurred in the midseventies. The slower rate of academic hiring resulted in part from growing financial strains, largely brought on by projections of declines in future enrollment in universities and colleges. These enrollment declines. however, have yet to be significantly felt in S/E fields. In addition, academic employment of recent S / E graduates (those who earned bachelor's and master's degrees between 1976 and, 1979) rose by only about 5 percent, but within the industrial sector S / E employment of recent graduates grew by over 20 percent. ${ }^{\prime \prime}$
Within the S/E disciplines, the NSF ${ }^{\prime}$ study found that employ mept demand in all sectors was greatest forengineers and computer specialists." Recent graduates in these S/E areas have tended to find more attractive employment opportunities within industry than within academic institutions. Of those students who attained bachelor's or master's degrees in 1977 in engineering, nearly five of every eight were employed as engin@rs in all sectors in 1979. Of those whose field of study was the computer sciences, almost two out of three persons who got master's degrees in 1977 and five out of six bachelor's recipients during that year were employed as computer specialists in 1979 (table B-18 and chart 177 . The ability of industrial - engineers and computer scientists to' earn higher salaries than their academic

[^7]

1, ininterparta is ohs musk a factur in the surge of industrial empluyment at the expense of academia Of great impurtance, too is that withon the past fru crars industrima hatrexpanded their afforts in the performance of research by investing in more sophisti. cated research facilities and equip: ment during a period when maintenance of existing research plants and the acguisition of more modern equipment At universities was becoming increasingly difficult. Universify researchers háve purchased most of their instrumentation with Federal funds, but the growth of Federal research support has failed to keep up withthe rising costs of the most advanced instrumentation needed. Professiónals in engineering and the computer sciences have tradi-
: Nially been strongly influenced by a research climate that they see as most randuras to opportunaty and inno1.11!.!

[^8]A National Academy of Sciences (NAS) report on academic engineering. found that ". .physical plants in which many departments of engineering are housed are deteriorating. Outdated lathoratories are common, some of which fall far behind thuse in industry, goi, ernment, or even foreign establishmenis. Faculty salaries are hot competitive with those in industry and it is difficult to attract American graduate students.... While all univ́ersity departments are seeking funding support, special conditions influence the economic health of engineering departments. Among these are the comparatively high cost of engineering education and the rapid pace of technology. "".

For all S,'E disciplines combined, the number of FTE R\&D scientists and engineers employed at universities and colleges increased at an average annual rate of 3 percent between 1976 and 1978. compared to the 1974-76 growth rate of 5 percent per year Within the industrial sector. however, FTE scientists and

[^9]engineers hate incredsed their numbers by a, 5 -percent average annual rate during the 1976-88 periud, compared to less than' 1 percent per year fur the previuus two years. Preliminary data for industrial empluyment in 1980 show that FTE's in research and development grew by 6 percent per year since 1978, while empluyment within doademic institutions grew by only 2 percent since $1978{ }^{4 /}$ (table B-19 and chart 18).

employment status

The number of scientists and engineers employed part time increased at an duerage annual rate of 5 percent between 1973 and 1980, about double the growth rate of full-time S/E persopnel. Both full- and part-time S/E empluyment grew at an average of 3 . percent per year between 1978 and 980 , a significant departure from the earlier 1973-78 period when average growth in part-time employment was nearly triple the rate for full-timers.

[^10]

Between 1973 and 1978, approximately 17,000 additional part-time S / E employees were hired by academic insti-tutions-àn increase of 35 percent. An even higher number of full-timers were added, nearly 26.000 , but their rate of 'growth was significantly lower, up 12 percent between 1973 and 1978. Between 1978 and 1980, however, fewer than 4,000 new part-timers were added to academic payrolls, a 5-percent increase, while nearly 14,000 new full-timers (a 6 -percent increase) were added. This employment trend of academic scientists and engineers was consistent with that shown in a study of all full- and parttime instructional staff in all disciplines reported in all institutions of higher education by the National Center for Education Statistics (NCES). The study reported that the number of full-time staff members ranked as instructors or above rose by 14 percent between 1973 and 1978, while part-timers grew by 46 percent. Between 1978 and 1980, however, projected growth in the number of part-timers and full-timers was estimated at similar overall rates (3 percent and 2 percent, respectively). ${ }^{15}$

Full-timestacademic scientists and engineers represented 79 percent of the S/E employment total in 1980, the same proportion as in 1978 but down from 82 percent in 1973 (table B-14 and chart 19). The slight shift from full- to parttime status was felt in every S/E field except the life sciences, where between 1973 and 1980 full-time employment rose at an average annual rate that was three times the growth rate of part-time life scientists.
Over two-fifths of all full-time employees over the 7 -year period were life scientists. Between 1978 and 1980, the number of full-time life scientists grew at a pace that averaged almost 10 times that for part-time life scientists, who comprised one-third of all part-time S/E employment. The life sciences were thepredominant discipline in terms of Federal $\cdot R \& D$ support received, and to a lesser extent, in full-time graduate student enrollment (table B-37). Between 1978 and 1980, all S/E disciplines other

[^11]
than the life sciences, when combined, employed new part-timers by a ratio of 4 to 1 over full-timers (table B-14).
.The number of doctorate-holders employed full time in universities and colleges rose by an average of 4 percent per year between 1973 and 1978, compared to a growth of less than one-half of one percent per year for master's. degree-holders and a decline of 2 percent per year for bachelor's degreeholders (table B-22). In the 1978-80 period, however, the annual growth rate for doctorate-holders slowed to 2 percent while master's-holders also increased 2 percent annually and bachelor's de-gree-holders went up by 10 percent.

type of activity

The FTE number of R\&D scientists and engineers employed at universities and colleges increased by a total of 22 percent between January 1973 and January 1980, accompanied by an overall growth of 20 percent in the number of FTE's engaged jn other S / E activities
(table B-17)." The rise in R\&D employment is directly linked to a heavy emphasis on $R \& D$ spending at academic institutions, up 21 percent in real dollars between FY 1972 and 1979 (table B-5). The annual growth rate in R\&D FTE's was greater on the averàge, however, between 1973 and 1978 (3 percent) than between 1978 and 1980 (1 percent), attributable, perhaps, to a rapid rise in utilization of graduate research assistants on $\mathrm{R} \& \mathrm{D}$ projects in the later period (table B-32).

A study by the National Commission on Research predicted fewer opportunities for new faculty appointments in research universities in the next two decades because the number of S / E graduate students is expected to decline. Recent baccalaureate recipients are finding that S / E careers in business and industry are becoming more challenging and rewarding while graduate study is becoming more expensive and harder to finance. As a result, the Nation may not have access to enough qualified academic instructors and researchers. The Commission's study stated that "...These prospects seem especially grave in the sciences and engineering where, for other reasons as well; there has been growing apprehension that American science and technology will. not continue to be as forward as they λ have been." The study found that while academic research remains substantial ${ }^{\text {. }}$ and of high quality, the continuation of such research is largely dependent on uncertain Federal support because institutions' own funds, endowment income, and State appropriations are sources that are unlikely to be significantly expanded.

The Commission further suggested that "...The ideal combination of instruction and research occurs as a graduate student works closely with an accomplished scientist on a research project of importance. In some fields, however, this ideal is no longer so often achieved. That is because of the increased scale of university research projects and

[^12]her dilut the equmpment nerded fur sume dadanced research is nut atailable in unltratpen the htuh reummended

 the prediction that there will be more and larger FFRDC's and that they will play an increasingly prominent role in the Nation's research effort.' ${ }^{1}$

type of institution

Doctorate-level institutions employed aboul two-thirds of all academic scien= tists and engineers in 1980. Between 1973 and 1980, nearly three-fourths of the net growth of 60,000 academic sci-
*entists and engineers occurred in doctorate institutions, for a 3-percent average annual rate of growth (table B-16 and chart 20). Although doctorategranting institutions represent quly about one-eighth of the total number of

- the Nation's academic institutions, their continued dominance in attracting scientists and engineers is a result of their ability to draw financial support from a number of sources, especially the Federal Government; State and local governments, and from endowment support. An NSF-sponsored study by the National Center for Higher Education Management Systems (NCHEMS) found that "...the leading 100 research universities showed an average reliance on Federal grants and contracts for 20-35 percent of their funds." ${ }^{18}$ This is a much higher proportion than at other institutions during the period studied (1975-79).
A slightly higher rate of S/E employment growth occurred during the 1973-80 peried at both master's-granting instilutiops and at 2 -year and nonscience-degree-granting institutions (4 percent). Master's-granting institutions accounted for 15 percent of the 7 -year net growth in academic $\mathrm{S} /$ /E employment, reaching a total of 37,400 employees in 1980, a slight decline (1,300 persions) from 1978. Bachelor's-granting institutions recorded a decline in hiring (less than 1 percent per year) during the 1973-80 period.

[^13]

Between 1978 and 1980, however, virtually all growth in academic \mathbf{S} / E employment occurred at doctorategranting institutions, a striking indication of the vitality of these institutions compared to all other institutions in this era of increasingly tight resources in academe.
The ratio of full- to part-time scientists and engineers has changed somewhat between 1973 and 1980, particularly at those institutions that grant master's degrees and at nonscience degree-granting institutions (table B-16 and chart 21). The sharp rise in the proportion of part-time employment in these institutions indiçates a strong trend towards hiring temporary, nonteriure track employees on multiple assignments. In a recent article in Change magazine, it was suggested that "...part-timers provide an attractive option. That they can be obtained at a lower cost than other faculty is fairly apparent. Whether they should be is debatable. It seems likely that some institutions would find it necessary to cut back their course offerings severely, if not close altogether, if denied the use of part-time faculty. By

-saving on fringe benefits and by paying lower salaries, these institutions reduce their instructional costs." ${ }^{20}$ The study added that "...most administrators have been exposed to the dire predictions of the future of academe. Administrators at schools experiencing temporary enrollment surges are loathe to tenure-in faculty since they may find themselves with a surplus when the long-awaited cataclysm arrives."

Between 1978 and 1980, gnly about one-fourth of all nondoctorate-granting institutions showed full-time employment growth but two-fifths.reported parttime employment growith. Over twothirds of aH doctorate-granting institutions in 1978, however, reported growth in full-time S/E employment in 1980 and over three-fifths showed increased part-time employment. In 1980, doc-torate-granting institutions employed 71 percent of all full-time scientists and engineers and 55 percent of all parttimérs (table B-16).

The leading 100 institutions in terms of total S/E employment in 1980 (about 3 percent of all universities and colleges in the country) employed nearly onehalf of all academic scientists and engineers and enrolled a similar proportion of all S/E graduate students. The same institutions accounted for over threefourths of both the FTE personnel in research and development and academic $R \& D$ expenditures.

Public institutions accounted for about, two-thirds, of all employed' ácademic scientists and engineers and S/E graduate students and nearly two-thirds of all acadểmic $R \& D$ expendițures. Between 1973 and 1980 , S/E employment rose at public institutions by an average of 4 'percent per year, compared to a rise of only i percentannually at private institutions. Graduate S/E enrollment, on the other hand, rose at a higher average annual rate.at private institutions than at public institutions between 1974 and 1979-9 percent compared to 6 -percent

sex of scientists and engineers, 1974-80

In 1980, men outnumbered women in. the academic S / E labor force by four to

[^14] -
one, accounting for 83 percent of all full-time and 75 percent of all part-time personnel (tables B-21 and B-25 and chart 22). Women have gradually increased their share of the total number of fulltime S/E professionals from 15 percent in 1974 when data were first collected by sex to 17 percent in 1980 . This almost imperceptible proportionate rise, however, conceals the rapid rate of increase in the number of women employed in academia relative to men. The number

of woment employed full time as scientists and engineers at universities and colleges during this period grew at an average rate of 6 percent per year compared to 2 percent for men. Data compiled by NCES for the academic year 1979/80 showed that among faculty in all ranks and disciplines, women appeared most often in the lower professional ranks (i.e., lecturer, instructor, assistani professor. $3^{\text {mo }}$ Data collected by NSF for the first time in 1980 show that women accounted for one-fourth of the' scientists and engineers employed part time, compared with only about onesixth of those employed full time.
Universities and colleges employed a more even mix of men and women than exted in the S / E labor force as a whole. The percentage of all academic S/E personnel accounted for by women, 19 percehtin 1980 , was more than twice the proportion of S / E women employed in all sectors of the economy, 9 percent. ${ }^{2}$,
The distribution of women professionals employed in S / E disciplines varied considerably from that of men, both nationally and in the academic "sector. In 1980 , more than one-balf of all women employed full time ${ }^{\text {in }} \mathrm{S} / \mathrm{E}$ positions at academic institutions were in the life sciences; the biological and medical sciences combined accounted for 45 percent (chart 23). In contrast, only 3 percent of all women employed full time as scientists and engineers were in the environmental sciences and engi-. neering together, although the number of women in each of these disciplines has doubled since 1974. The distributions by field of both sexest have changeds little, however, over the 6 -year period covered (table B-21).
The growth rate of women exceeded that of men-in every major S / E field during the 6 -year period, $1974-80.4$ Between 1974 and 1980 the number of women employed full time changed most dramatically in engineering, up 13 percent per year, and in the environmental sciences, up 12 percent per'year ftable $\mathrm{B}-21$ and chart 24).
Women made up 30 percent of the psychologists and 23 percent of the life

[^15]∞

scientists employed in academic institutions in 1980, but accounted for much smaller shares of all engineers and -environmental scientists (3 percent and. 8 percent, respectively). Thus, even if universities continue to hire women at present rates felative to men in all S/E disciplines, their proportion to the total would remain small for the forseeable future.

The ability of higher education institutions to sustain the 1974-80 employment growth rate for women in the coming decade by providing new openings may be restricted, however, by decliffing enrollment levels, slower retirements due to the elimination of the mandatory retirement age, the high proportion of "academig faculties with tenure, and uncertainty concerning the level of continued support from Federal and State Governments: One NRC-spónsored study suggested that the turnover in faculty positions in response to falling enrollment, ás forecast for the eighties, may reduce the number of faculty openings by one-half. ${ }^{2}$

Besides the prospect of having fewer positions to offer women in the future, university hiring officials are alréady forced to compete in the job market with industry for S/E-trained candidates in several areas, For example, nearly 1,600 full-time engineering faculty positions were vacant in engineering colleges as of fall 1980.*3 A survey of universities and 4-year colbeges found that nearly 90 percent of engineering schools reported a decrease in their ability ta

[^16]recruit and retain full-tıme faculty. This deurease resulted pirimarily from competition with industry, where higher Salarie's and yther benefits such as mure modern fatilutes and equipment were ciled at the indjor altratiuns of industrial'employnent.

Anecduld infurmatiun cullectyd by NSF from academic officials indicates that this competition is most intensive in- hiring women who are trained as engineers. Presently; women who are employed in higher education receive lower salaries and are less likely to *have tenure than their male counterparts. For the 1979, 80 academic year, VCES rapurtad that fin ult balaries far wamern in all datiplinter and therefer tralage wh temured womenfac ulty laged behind men in all professional ranks. ${ }^{24}$ It.should be noted. however, that since 1975 the proportion of women in all façulty ranks. from lecturer to full professor, has increased steadily. ${ }^{\circ}$ A - 1980 study of women scientists employed in industry and government found that although progress thad been made in equalizing pay, some salary differences between men and women still remained. ${ }^{4}$

minorities, 1973-79

In the 1979 biennial Survey of Doctorate Recipients conducted by NRC under NSF sponsorship, information on racial background was received from 96 percent of the 332,300 doctoral scientists and engineers reporting in that year; 8 percent of those for whhom racial data were available were reported as nonwhite. ${ }^{27}$ The total number of gcientists and engineers in the Upited States holding doctorate degtees increased at an average annual rate of 6 percent between 1973 and 1979. White doctorateholders accounted for 82 percent of the net increase, and Asians for 13 percent. The number of Asians increased the-

[^17]mast rapidk of ant group nadal 15 percent per yedr uver the b-yedrperiod (table B-27).

 1979 and the same proportion of all doctorate sciendists and engineers. . Universities and colleges accounted for higher proportions of the black and American Indian S/E totals- 57 percent of the black S/E doctorates and 64 percent of the Indians. The proportion of Asians employed in academe was only 45 percent, while the industrial sector employed a much largè proportion of Asians than of any other group40 percent. By contrast, 11 percent of the black S/E doctorates, 19 percent of the American Indians, and 24 percent

* of the whites were employed in indus. trial firms.

Scientisis and engineers of Amerionn Indian x_{x} or Alaskan origin showed the highest average annual growth rate of all S \times E doctorates employed in acadernia between 1973 and 1979-15 percent-but still comprised less than one-half of 1 .percent of all doctoral scientists and engineers employed by universities and colleges. Asians and Pacific Islanders infcreased at the next, highest rate, 11 percent per year, black S/E doctorateholders increased by 7 percent per year, and whites increased by 5 percent per year.

The wide differences in sector of employment among the various racial groups reflects variations in their distribution by field. Asian scientists and engineers, for example, accounted for a lower proportion of academically employed doctorate-hólders than of all doctoratesholders but a higher proportion of those employed in industry. The reason is that more than one-third of the scientists and engineers of Asian background with doctorates were working as engineers, an area in which the industrial sector was the predominant employer. Conversely, among black scientists and engineers, the largest proportions were in the life and social sciences, areas in which the higher education sector was the employer of more than three-fifths of the total doc-torate-holding population. ${ }^{2 s}$

[^18]

The largest proportion of both white and Asian doctoral scientists and engineers employed by universities and colleges was in the life sciences (chart 25). Among blacks, social scientists comprised the largest group. Sdcial scientists were the second largest group among whites, while among Asians, the physical scientists ranked second (table B-28).

In 1978, the latest year for which estimates of unemployment rates of scientists and engineers are available, the rate dectined for each racial group (chart 26). In 1974 unemployment among black scientists and engineers was ơver 8 percent, the titghest of all racial groups (table B-29).

postdoctorate utilization

Among the 325,000 scientists and engineers employed in universities and colleges in January 1980, 18,600, or approximately 6 percent, were categorized as postdoctorates on the basis of data reported in NSF's Survey of

Graduate Sciente Students and Pustductorates (GSSP). Fall 1979. In that survey. postdoctorates are defined as individuslis with science ur engineering Ph.D.'s. M.D.'s. D.D.S.'s or D.'.'M.'s. or their foreign equivalents.' whó ded ote their full time to research or study in a particular department under temporary appointments (generally for a specific time period) which carry no academic rank. The major purpose of these ap-

- pointments is to provide additional training, although these poṣtdoctorates mady contribute to the academic program through seminars, lectures. or working with graduate students. Appointments in residency training. programs in the - medigal and health professions ăre excluded. unless research training under the supervision of a senior mentor is the primaryturrpose of the appointment.
(The number of postdoctorates employed in unifersities and colleges incredsed at ap average annual rate of unly 2 percent between fall 1974 and fall 1979, compared with an annual rate of 3 percep for the comparable period, January 1975 through January 1980. for all other academic scientists and engineers (table B-30 and chart 27). Between

1974 and 1977. the average annual growth rate for postdoctorates was nearly 6 percent; however, the 18,600 total reported in the fall 1979 survely was 6 percent less than the fall 1977 total. While part of the recent downturn may reflect a real.decline in postdoctoral utilization,
the numbers in earler years may hase been slightly inflated by the inadvertant inclusion by medical sthouls of some medical residents and clinical fellows not involved in research. In the survey questionndire instructions for fall 1979° thé ${ }^{\text {defefinition was rephrased to specify }}$ Shat such residents or fellows should be excluded.
Since postdoctorates contribute to the R\&D performance at universities and colleges in roles somewhat analogous to those of graduate research assistants, it is of some value to compare the distribution of the two groups. Furthermore, since both groups were financed largely through academic R\&D funding, the distribution of $R \& D$ expenditures is also of interest.
At the total level, there were 2.6 graduate research assistants for each póstdoctorate in fall 1979, up slightly from a ratio of 2.4:1 in 1974. The areas of science and engineering differed significantly with regard to the relative numbers of postdoctorates and graduate research assisfants. In the social sciences. there were over 13 graduate research assistants for avery postdoctorate; the environmental sciences and engineering also showed graduate research assistart,'postdoctorate ratios in excess of 10:1 At the other end of the spectrum, there were almust as many pustductorates as graduate research assistants in the life sciences.
The distribution of postdactorates by area of science/engineering tended to be closer to that of R\&D expenditures than did the distribution of graduate research assistants (chart 28). The life sciences accounted for a majority of both postdoctorates and $\mathrm{R} \& \mathrm{D}$ expenditures, but for only 31 percent of the graduate research assistaints (table B-31). During the 1974-79 period, the number of graduate research assistants at-doc-torate-granting institutions rose 4 percent peryear (table B-32 and chart 29).
The Federal Government provided major support to three of every four postdoctorates in 1979, a sligh rise from the earlier years when the proportion whose major source of support was the Federal Government fluctuated around 70 percent. All of the sharp decline in postdoctorates reported between 1977 and 1979 oćcurred among those whose primary source of support was nonFederal

The 10,300 postdoctorates employed in p<blicly controlled universities and colleges, although representing a slight decline from the 1977 peak, increased as a proportion of the total because of the sizable decline in the number of postdoctorates reported by private institutions (5 percent per year). This is consistent ${ }^{*}$ with the declining share of all research and development per-

formed by private institutions, as reported in part 1. Since the decline affected engineering and the physical, environmental, and life sciences in both public and private institutions, it is evident that a real decline occurred, and that not all of the drop can be traced to the inclusion of medical residents, as noted earlier.
Little difference between publič̉ and private institutions in the distribution by field was observed. In botheypes, life scientists comprised about two-thirds of the total, with physieal scientists and engineers making_up most of the remainder (table B-33 and chart 30)
Women comprised 18 percent of the posidoctorates reported in fall 1979, about one-half the proportion of women among all scientists and engineers in the 1978 S/E labor force. Three-fourths of the women postdoctorates were life scientists, compared with 62 percent of the men. For both sexes, the physical scientists were the second largest group, accounting for 11 percent of the women and 24 percent of the men (table B-34).

Nearly one-third of the postdoctorates employed in American universities and colleges were foreigners, almost the same proportion as in 1977. These foreign postdoctorates differed sharply from their American cólleagues in terms of field distribution. Whereas 72 percent of the American postdoctorates were life scientists, these fields accounted for only 51 percent of fureign post-

ducturates Physical scientists comprised 10 percent of the U.S: citizen posidoclurates hut 33 percent of the foregners. In erginewing the difference was even mure marked Elerent fricent of the furegn porstducturates were engineers, hat engineers made up only 3 pertent of thuse with.U.S. citizenship. In fact, among engineering postdoctorates foreigners outnumbered Americans by more than three to two (table B-33 and chart 31).

Besides the 18,600 posidoctorates for whom data were provided in the grad. uate studept survey, an additional 2,700 scientists were reported in fall 1979, as "other nonfacully doctoral research staff "Life scientists made up the largest contingent, with 56 percent of the total, followed by physical scientists who cimprised it purturn of the tutal Wumen atcuanted fur 23 percent of nonfaculty doctoràl. research personnel. Nearly three-fourths of the women were reported as life scientists, compared with one-half of the men (table B-34).

trends in graduate s/e enrollments

general charactistics, 1975-80

Along with the increases in current R\&D expenditures at universities and colleges and academic employment of scientists and engineers, the number of * students enrolled for advanced study in the sciences and engineering grew throughout the late seventies, at an average annual rate of almost 3 percent. Data
: from the fall 1980 survey indicate that this growth rate continued in the 1979/80 period. Fall 1980 graduate S/E enrollment in doctorate-granting institutions was up 4 percent oyer fall 1979, in contrast to a 6-percent decline in enrollment at master's-granting institutions. Full-time enrollment grew at a slightly higher rate between 1979 and 1980 than did part-time enrollment, in contrast to earlier years when the growth rates in part-time enrollment were significantly higher than those in full-time enrollment.
Departmental coverage of the NSF Survey of Graduate Science Students and Postdoctorates, which forms the "basis for this part of the report, has expanded gradually since the inception
of the survey series in 1972. Summary 'data on graduate students enrolled at institutions granting a master's as the highest degree in the sciences and engineering were first collected in 1875 through 1977. These institutions were
wot surveyed in 1978, and detailedinformation on enrollment at master'sgranting institutions comparable to that collected from doctorafe-granting institutions is available only for 197.9. The bulk of this section of the report, therefore, will be concentrated on 1975-79 \&raduate enrollment trends in doctorategranting institutions only. These institutions also accounted for 98 percent of all academic research and development in the United States in 1979, ${ }^{29}$ and for 67 percent of all academically employed scientists and engineers in January 1980, as discussed earlier. ${ }^{30}$

enrollment and degree patterns, 1975-79

Graduate S/E enrollment at doctoratégranting institutions grew from 295,600in 1975 to 321,800 in 1979, an average annual increase of 2 percent. Mosst of the growth occurred during the latest. ${ }^{-}$ year of the 4 -year period; in the earlier yeans (1975-78) the average growth rate was less than 2 pergent per year. Also, the proportion of all graduate students enrolled in S/E courses rose from 23 percent in 1975 to 30 perceritin 1979 (table B-35 and chart 32).

[^19]

This growth in graduate S / E enrollment occurred in spite of steady declines in overall graduate enrollment; between 1975 and 1979 the total number of students enrolled in postbaccalaureate study fell from $1,267,500$ to $1,074,900$, an average annual decline of 4 percent. ${ }^{31}$ TotalS/Egraduate enrollment increased during the same period by an average of 3 percent per year, to 375,300 . Only about one-half of the universities and colleges in the United States that offered postbaccalaureate studies had programs leading to the $\mathrm{Ph}_{\mathrm{M}} \mathrm{D}$. or other doctorate degrees, and these institutions enrolled about six of every seven graduate students.

The expansion and contraction of total graduate enrollment and the distribution of students among fields, both science and nonscience, are the products of a number of external influences. First, of course, is the total college-age population A number of recent demographic studies have predicted a serious decline in total enrollment in higher education on the basis of the downturn in birthrates which began in the late fifties. ${ }^{72}$

Less than one-half of the population between the ages of 18 and 24 is enrolled. in institutions of higher education at any level" "It may therefore be more appropriate to examine the trend in baccalatureates awarded, since recent graduates constitute the pool from which the vast majority of graduate students is drawn After increasing at an average annual rate of 9 percent during the late sixties and early seventies, the number of bachelor's degrees awarded peaked at 945,800 during the academic year 1973/74. Between 1974 and 1979 the total declined slightly but with no pattern traceable to changes in the birthrate. ${ }^{\text {a4 }}$

[^20]On the contrary, the fluctuations in the period after 1974 seem to be more closely related to the general political and economic situation. For example, we end of the draft and American military involvement in Southeast Asia in 1974 was followed by a 7 -percent average annual decline in total graduate enrollment between 1975 and 1977, compared with a decline of less than 1 percent per year between 1977 and 1979 (table B-35 and chart 33):

Various analysts have cited a number of other possible explanations for this downturn in overall graduate enrollment. The decisions of high school graduates on whether to attend a college or university and the decisions of bachelor's de'gree-holders on whether to begin or continue graduate study are based on, among other criteria, each student's perception of the relative advantages in terms of lifetime income and job satisfaction weighed against the costs. These costs are of two types. Immediate tuition bills and earnings foregone during the period of study. For example, during the 1974-78 period, tuition in private institutions.rose at about 7 percent, the same average an: nual rate as inflation and at only a slightly slower rate in public institutions. ${ }^{1 "}$ During the same period, however, the gap between median annual salaries of college graduates and high school graduates narrowed significantly for both men and women. ${ }^{16}$
The comparatively steady rate of S/E graduate enrollment growth seems to be the product of offsetting forces on three levels: An increase in the number of women enrolled in graduate schools was balanced by a decline in the number of men; an increase in the _ number of minority students was offset by a decline in the number of whites;

[^21]
and an increase in the number of older students was balanced by a decline in the number of 18 - to 24 -year-olds. ${ }^{1}$

General expectations of an oversupply of doctorate-holders in the coming decade in some fields-especially the orts, humanities, and social scienceshas led to a reluctance on the part of many bachelor's degree-holders to pursue advanced training for academic jobs which might not exist wen they complete their education. Given the anticipated cutbacks in academic hiring-a result of the extensive hiring and liberal granting of tenure during the period of rapid expansion during the sixties-this reluctance affected most severely those fields in which academic institutions were the primary employers of doc-torate-holders. In the academic year 1977/78, more than two out of three of thotse receiving doctorates in education, the humanities, and professional fields found employment, in academic institutions, whereas in engineering and the life and physical sciences the ratio was less than one in three. ${ }^{38}$
Graduate S/E enrollment increased much faster between 1975 and 1979 in master's-granting institutions than in dactorate-granting institutions-6 per-

[^22]cent per year compared to 2 percent peryear (table B-36and uhart 34) This grow th rate was diso faster than the -percent derage annualgrow th in the empluyment of scientists and engneers in master's-granting institutions In douturate-granting institutans, however, the reverse was true. While the number of S. E graduate students enrolled rose dt an averagt annual rate at 2 frement. the increase in empliyment of scientists and engineers averaged 4 percent per year, primarily as a result of the employment increases in large research universities.

It uould be reasonable to assume that fluctuations in the production of bachelor's degrees will be reflected in similar fluctuations of master's degrees one or two years later, and of doctorates at -some even later time. No such direct relationship is established because of the multiplicity of other factors affecting shifts in graduate enrollment and de-留er monferend While ther number of Whithelar o degrers anarded in all tields was stable during the 5 -year period 19:4:9, the number of master's degrees au arded increased at an average annual : rate of nearly 2 percent and the number of doctorates awarded declined by almost 1 percent per year. Significant increases at all three levels were reported only in the health fields: Healthrelated baccalaureates awarded grew by 8 percent per year, master's degrees by 10 percent per year, and doctorates at an average annual rate of 4 percent. In S / E fields, tho number of baccalaureates and doctorates awarded declined, at annual rates of 1 percent and nearly 2 percent, respectively (table $B-37$ and chart 35).

In 1975, the largest number of graduate students was enrolled in courses in the social sciences; in 1976 and subsequent years those in the life sciences have comprised the largest group with a 2π-percent share compared tq 24 percent in the social sciences The sizable growth rate in the life sciences (nearly 5 percent . per year between 1975 and 1979) is traced to the wry rapld growth in health science enrollment. 12 percent peryear At the "ther end of the scale. graduate enrollment in the physical sciences remaned wdually level. increasing at an average rate of only one-half of 1 percent per year.

Chart 35. Number of degrees granted by institutions of higher education by level and field

Master's degrees

SOURCE: National Center for. Education Statistics (HEW)

full-time graduate s/e enrollment in doctorategranting institutions

Since comparable data on graduate S/E enrollment in master's-granting institutions and on part-time enrollment are not available for all years from the CSSP survey, the remainder of this part of the report focuses on full-time graduate students enrolled in doctorategranting institutions. These students represented about three out of every five S/E graduate students in 1979: the number increased at an average răte of 2 percent per. year between 1975 and 1979. The number enrolled part time increased more rapidly than did the number enrolled full time. Part-time students comprised only one-fourth of the total number enrolled in 1979 , but made up almost one-half of the net increase over the 4 -year period.

- In most fields,"growth rates of fulltime S/E graduate students enrolled in doctorate-granting institutions were slightly higher during the 1975-77 pẹriod than during the 1977-79 period. In the earlier period, the most rapid growth in full-time graduate enrollment occurred in the environmental sciences (5 percent per year), followed by the life sciences and psychology (4 percent annually). Full-time enrollment in engineering, after a slight decline in the 1975-77 period, grew by 3 percent per year between 1977 and 1979 (table-B-38 and chart 36). It should be noted, however, that a substantial proportion of this growth can be attributed to the rapid rise in the number of foreign nationalsmost of them on temporary student visas-enrolled for graduate degrees in engineering at American institutions. (This subject is discussed more fully in a later subsection of this report.)
The number of first-year graduate students enrolled in doctorate-granting institutions continued to declinethough by only 2 percent between 1978 and 1979, compared with an 8-percent drop between 1977 and 1978-and the growth rate accelerated for those beyond ${ }^{*}$ their first year from 5 percent to 7 percent (table B-39). The downtúrn in numbers of first-year graduate S / E students and rise in those beyond their

first year indicate that such negative factors as rising tuition and the anticipation of difficulty in finding S/E employment continued to have an influence.

sources of support

As a result of tuition increases during the 1975-79 period, students desiring to continue studies beyond the bachelor's degree faced growing difficulties in financing their graduate education. The largest group, those graduate students. receiving primary support from their institutions, accpunteq for about 37 percent of the full-time total throughout the peflod, while those graduate students who were reported as being their own primary source of support declined slightly from 32 percent to 30 percent of the total.

The most rapid growth rate between 1975 and 197.7 occurred in the number of students depending on "other outside support" -4 percent per year. In the 1977-79 period the number of students supported by the Federal Government increased at a rate of slightly over 2 percent per year. The number of students relying primarily on self-support, after remaining virtually level during the 1975-77 period, declined by nearly .1 percent per year during the later period (table B-40 and chart 37).

mechanisms of support

In 1979, about 22 percent of all fulltime graduate students in S/E programs in doctorate-granting institutions were supported through research assistantships, and a like proportion through

teaching assistantships. Fellowships and traineeships together accounted for an additional 17 percent, and the remaining 39 percent were supported under "other" mechanisms (of which 78 percent were those students reported as self-supporting).

The number of S/E graduate students supported under researc̣h assistantships increased at the highest rate of all mechanisms-5 percent per year. In contrast, the number supported under fellowships and traineeships was almost unchanged throughout the 4 -year period under consideration-despite the 11percent average annual decline in the amounts obligated directly by the Federal Government for such support during the 1974-78 period (table B-41). Those relying on other means of support (including self-support) increased by about 1 percent per year in the 1975-77 period and remained level during the 1977-79, period (table B-42 and chart 38).

women in graduate s/e programs

Whe 1975-79 growth in graduate S / E enrollment is largely a function of the
incredsed participation of women in graduate study. While the number of men enrolled full time in S. . graduate courses declined steadily at a rate of 1 percent per year from 1975 to 1979, the number of nomen in such courses increased by 10 percent per year from 1975 to 197% andpy 6 percent per year from 1977 to 1979.

Although the growth rates for women graduate students were consistently higher than those for men in all S / E areas, in those traditionally considered masculine occupations the difference was especially marked. For example, the number of women enrolled ingrad. uate study in engineering increased at average annual rates of 11 percent in the $1975-77$ period and 20 percent between 1977 and 1979. The environmental sciences also showed sharp increases in the number of women enrolled: 18 percent per year in the earlier period and 13 percent per year in the later period. The number of men enrolled increased in only two areas, engineering and the environmental sciences (table B-43 and chart 39).

Tu sume extent, the rapid increase in the number of women enrolled in S/E graduate student is simply one indication of wumen's increasing participation in higher education at all levels. Thus, 1977 was the first year in which women outnumbered men at the junior college level, ${ }^{19}$ and in 1978 for the fipst time women outnumbered men among all undergraduate students. ${ }^{\text {41 }}$

These enrollment increases vere reflected in the number of degrees awarded to wamen. Psycholbgy led all other fields in the number of doctorate degrees awarded to women (table B-44). Almost one-third of the women who received doctorates during the academic year ending in June 1979 were in psy-chology-a significantly higher proportion than were enrolled ingraduate studies in fall 1979 or than had found employment in the labor force in the previous year as psychologists. In both graduate enrollment and doctorates earned, the proportions of women were almost unchanged from 1977. The life and social sciences together accounted for 70 percent of the women enrolled full time in S / E graduate study at doc-torate-granting institutions, but,only 53 percent of the women awarded doctorates in 1979 and only 43 percent of all women employed in the sciences and engineering. Only 4 percent of the women graduate students or doctorate recipients were in the mathematical/ computer sciences, but 23 percent of the women employed asscientists and engineers were working as mathematicians or computer scientists (table B- 45 and char 40).

The sources of support, for women differed significantly from thase for men in 1979. While 36 percent of the women enrolled full time were self-supporting, only. 28 percent of the men relied primarily on their own funds. In contrast, 38 percent of the men received their major support from institutions, but only

[^23]Chart 39. Full-time graduate science/engineering enrollment in doctorate-granting institutions by field and sex

Chart 40. Women in science/engineering by field

35 percent of the women relied primarily on this source. The Federal Government was the major source of support for 23 percent of the women enrolled full time in graduate S / E programs, almost the same proportion as that of men (table B-46).

foreign graduate students

frhe proportion of foreign students enrolled full time in S / E graduate.programs at doctorate-granting institutions rose from 16 percent to 20 percert. between 1975 and -1979. Of the et increase in full-time graduate S / E enrollment during the four years, 88 peroent was attributable to the growing number of foreigners enrolled in American institutions. While the number of Americans enrolled asgraduate students increased by only 1 percent per year between 1975 and 1977 and decreased slightly between 1977 and 1979, the number of foreigners grew at an average annual rate of more, than 5 percent between 1975 and 1977 and accelerated to 10 percent ${ }^{\circ}$ per year between 1977 . and 1979.

The number of foreign students rose in almost every S / E area at a faster rate between 1977 and 1979 than between 1975 and 1977 ((table B-47 and chart 41). American citizens enrolled in graduate study showed significant increases between 1975 and 1977 in only three àreas of science and engineering: The environmental sciences ${ }^{\prime}(5$ percént per year) and the life sciences and psychology (4 percent per year each), along with sharp declines in engineering and the mathematical/computer, sciences (4 percent and 3 percent pet year, respectively). Between 1977 and 1979, however, declining enrollment of U.S. citizens was reported in five of the broad areas of science and engineering, with only the life and environmental sciences showing slight increases.
The increase in foreign S / E graduate enrollment is consistent with the growth in the number of ndaresident aliens enrolled (n all fields and at all levels of -hígher education reporked by NCES of The Department of Education (in earlier years, the Office of Education within HEW). From 1976 to 1978, the most recent period for which detailed NCES data

are available, total graduate and undergraduate foreign enrollment increased at an average annual rate of 7 percent. Ingeneral, the proportion of foreigners was higher at the graduatedevel than at the undergraduate level and higher also in the sciences and engineering than in the arts and humanities. ${ }^{44}$.
The largest proportion of foreigners enrolled in graduate S / E programs was reported in engine fing- 41 percent of all engineeringgraduate students in 1979 , compared with 32 percent in 1975 . The mathematical/computer sciences also showed a foreign student percentage significantly above the avérage, with 30 percent, up from 20 percent four years earlier (chart 42).
The continuing rapid growth in the number of foreign students enrolled in S/E graduate courses in American institutions has presented problems both

[^24]
for the students themselves and for their host institutions, especially in the case of those from the developing nations. A 1979report by the National Association of Foreign Student Affairs (NAFSA) - describes some of these problems. Although he study pertains to students in all fields and at all level's, it is equally applicable to S/E graduate students. On the part of the students, lack of sophisticated or even adquate equipment in their home countries combined with resistance to imported technology on the part of their colleagues who have not had American training makes their adjustment to conditions in their home countries more difficult. The institutions are faced with the problem of trying to adapt programs and courses originally designed for American students to it the special needs of those from abroad. ${ }^{42}$

A recent NSF report, Foreign Participation in U.S. Science and Engineering Higher Education and Labor Markets, gives some indication of the significance of the growing numbers of foreigners enrolled in American universities and colleges for advanced study in the sciences and engineering. In 1979, one of eyery five S / E graduate students and doçtorate recipients was a foreign citizen; in engineering the proportion was one out of two doctorate recipients. If the trend continues and those students on temporary visas acquire permanent status, the effect on the engineering labor force could mean that by 1990 one out of three engineers working in the United States would be a foreign national, compared to about one outof eight in 1979. ${ }^{33}$

[^25]
part-time graduate s/e enrollment at doctorategranting institutions

In addition to the $224,100 \mathrm{~S} / \mathrm{E}$ graduate students enrolled full time at doctorategranting institutions, 97,700 were reported as enrolled part time-up nearly 4 percent per year since 1975. These students reprèsented 30 percent of all S/E graduate students enrolled in doc-torate-granting institutions in 1979, up only slightly from the 29 percent who were reponted as part time in 1975 and considerably less than their 59-percent share of all graduate students in all fields in 1979 (table B-48 and chart 43).
The 4-percent average annual.growth rate in part-time graduate enrollment in the sciences and pngineering in the 1975-79 period was twice the 2 -percent average annual increase in full-time S/E graduate enrollment. Between 1975 and 1979, part-time graduate enrollment in all fields fell at án average annual rate of 6 percent, compared with a 1-percent per year decline in full-time enrollment (table B-49 and chart 44).44
The distribution by field of part-time graduate students differed sharply from that of full-time students. Part-time graduate students enrolled in engineering made up the largest single group with 30 percent of the total, followed by the social sciences with 27 percent: By contrast, 30 percent of the full-time enrollment was in the life sciences,"but only 21 percent of the patt-timers. Those - in the physical sciences made up 10 percent of the full-timers compared to only 3 percent of the part-timers.
"Andrew j Pepin, Fall Enrollment in Higher Education, 1979 (NCES 80-349) (Washington, D.C. Supt. of Documents. US Government Printing Office, 1980). p. 4.

Chart 4% Graduate enroliment by field and status.

Chart 45. Part-time graduate science/engineéring enroliment in doctorate-granting institutions by field and sex: fall 1979

The rafo of women to men among part-ime S/E graduate students waş nearli the same as among full-time students about one to two Men differed sharply from women in terms of feld of concentration. however. Among men the largest number was in engineeríng courses (42 percent while more women were enrolled in the life sciences (38 percent) than in any other field. The social sciences ranked second among both sexes, with 24 percent of the men and 33 percent of the women enrolled in this area ftable B-50 and chart 45). Because of the lack of trend data on part-time S/E graduate students by sex, it is not yet possible to determine whether the distributions of men and women by field are becoming more or less similar over time. Given the distribution of employment opportunities among fields, however, it is likely that fewer students of both sexes will make the social sciences theiffield of specialization, while enrollment of both men and women in such fields as. engineering and the mathematical/computer sciences will increase. Since ample employment opportunities in industry are avalable in these latter two fields, this is apt to be reven mpre true fur part-ume students than for full-time

$$
1
$$

appendixes

\cdots

survey of scientific and engineering expenditures at universities and colleges, fy 1979

On January 24, 1980, survey questionnaires were mailed to 567 universities and colleges offerlng a doctorate or master's degree in the sciences and engineering, and to all other institutions with $\$ 50,000$ or more in separately budgeted R\&D expenditures. In addition, 19 FFRDC's were surveyed separately. The institutions surveyed are estimated to account for over 99 percent of all academic R'\&D expenditures. The criteria for establishing the survey universe is essentially the same as in FY 1977.
The FY 1979 survey was conducted on' a "full-scale" or long-form basis and followed essentially the same format used in FY 1977. In the continuing effort to provide statistical information of importance to Federal and academic planners, NSF modified portions of the 1979 questionnaire. The instruction and departmental research item was deleted and replaced with a new optional item on separately budgeted current fund expenditures for S / E equipment used in research projects. It was identified
as "optional" in order to provide a year's leadtime to respondents to prepare for any significant change or addition to the survey form. Accurate data on research equipment are not readily available in most institutions' central recordkeeping systems and many schools could not repond readily to this item in FY 1979: During the survey cycle, respondents indicated these data would be available in the future, since many institutions are revising their recordkeeping procedures in compliance with the new Federal reporting requirements to provide more detailed inventory records on scientific apparatus.
In an effort to decrease the respondent reporting burden, NSF conducted an abbreviated or short-form survey during FY 1978, mailed to doctorate-granting institutions only. Respondents subsequently have indicated, however, that since the record systems and computer programs, used to respond to NSF surveys had already been developed to ${ }^{+}$ supply all the data needed on a long form, no real reduction in the burden was achieved by alternating with a short form. Therefore, NSF decided to resume ise of the standardized annual form for the entire universe and plans to maintain consistency to the extent possible.
At closeout of the survey in late July 1980, 510 institutions, or 90 percent of the universe, had responded, including. 99 of the top 100 institutions. Table A-1
shows a distribution of the institutional response rates by highest degree granted. The final data tabulations are available in Acpademic Science: RधD Funds, Fiscal Year 1979 (Detailed Statistical Tables) (NSF, 81-301).

1
Table A-1. Response rates to survey of academic R\&D expenditures by highest degree granted: FY 1979

Highest degree granted	Number surveyed	Number -of respondents	$\begin{gathered} \text { Percent } \\ \text { of } \\ \text { total } \end{gathered}$
Total	567	510	89.9
Doctorate	320	301	94.1
Master's.....	179	152	84.9
Bachelor's and no science degree ...	68	57	83.8

Source' Nationa!Science Foundation

$$
\begin{gathered}
\text { imputation for } \\
\text { nonresponse }
\end{gathered}
$$

Approximately 10 percent of the survey universe had not responded at the survey closeout in July 1980. The computer program developed to estimate data for these noñrespondent institutions iss referred to as "imputation" and
is based on key data elements reported in the institutions' prior years' response, when available. Each phase of the FY 1979 imputation process used detailed summary data according to the respondent institutions' characteristics (highest degree granted and type of control) to determine inflation or deflation factors. These factors were applied to respondents' previous years data; however, because pnly doctorate-granting institutions were surveyed in FY 1978, data for all other nonrespondent schools were estimated based on inflation or deflation factors applied to their FY 1977. responses.
Table A-2 shows total and estimated or imputed separately budgeted R\&D expenditures and the percentage of total which was estimated.
In the absence of a reliable R\&D cost index, constant-dollar figures are derived by using the GNP implicit price deflators calculated by the Depaftment of Commerce, as modified by NSF to reflect a fiscal year basis. Table A-3 shows the factors used in calculating constant 1972 dollars for all years from 1972 through 1982.

response analysis and data quality

NSF's effort to reduce the institutional reporting burden of surveys by changing to a biennial cycle utilizing an abbreviated form in alternate years failed to give any significant relief. Large institutions that responded to both the long form and short form reported that little if any reduction was achieved in the reporting burden since most of these schools had incorporated into their systems the requirements for completing the long form. Notable response problems, however, arose for the smaller nondoctorate schools, resulting in an overall lowering of the response rate and a slowdown in the timeliness of responses. For example, during the short-form cycle, 1978, when only doc-torate-granting institutions were surveyed \& response rate of 96 percent was attained, generally the same as in, previous long-form years. During 1979, howéver, when the full universe was surveyed, the response rate dropped to 9ρ percent, primarily as a resuilt of the

Table A-2. Imputation rates to survey of academic R\&D expenditures by highest dégree.granted: FY 1979
[Dollars in millions]

Highest degree granted	Separately budgeted R\&D expenditures	Amount imputed and/or estimated	Percent of total
Total	\$5,183	\$202	3.9
Doctorate	5,093	183	3.6
Master's .	69	13	18.8
Bachelor's and no. science degree .	21	6	28.6

Source National Sclence Foundation

Table A-3, Gross national product (GNP) implicit price deflators used in the calculation of constant 1972 \because. . dollars in.this report

- + C Year	Factor:
1972	1.000
1973	1.044
1974 .. .	1.119 .
1975	1.231
1976	1.317
1977	1.406
1978	1.500
1979	1.628
1980	1.767
1981	1.944
1982	2.113

Source Department of Commerce, adjusted to a fiscal-year basis by the National Science Foundation
declining response rates of nondoctorate schools. NSF learned that the reason for this reduction was that most of the institutions which were not surveyed in 1978 had reallocated their personnel and the time to complete the survey forms. When requested in 1979 to fill out the questionnaire, these resources were often no longer available. Respondents from both doctorate-granting and nondoctorate-granting schools indicated their preference for a standdard, consistent format each year. Therefore, NSF will no longer use a short-form questionnaire with an abbreviated universe; the survey effort has returned in 1980 to the former full-scale data collection procedure used through 1977.
Additional questions regarding the findings from the Survey of Scientific
and Engineering Expenditures at Universities and Colleges should be addressed to James B. Hoehn or M. Marge Machen, Universities and Nonprofit Institutions Studies Group, Division of Science Resources Studies, National Science Foundation, Washington, D.C. 20550 (202-634-4673). Data tapes for $F Y$ 1979 and prior years may be purchased from:

Moshman Associates, Inc.
6400 Goldsboro Road

- Washington, D.C. 20034.
(301) 220-3000

survey of scientific and engineering personnel at universities and colleges, january 1980

Survey questionnaires were mailed in mid-February 1980 to more thanf 2,200 institutions of higher education and 19 university-administered FFRDC's. The survey universe included all institutions of higher education, including 2 -year institutions, that were identified by NSF as̀ offering degree-credit courses in either the sciences or engineering.
At the survey closeout date in midSeptember 1980, the survey population included 2,247 universities and colleges and 19 university-associated FFRDC's. This adjustment reflected curricúlum modifications, i.e., addition or termination of S/E programs, as well as changes in the institutional population. Of this total, 1,364 or 61 percent responded, compared with 79-percent response rate for the previous full-scale survey in January 1978. General expressions of concern about "paperswork burden" related to the change froma short to a long form and increased workloads of academic support staff appear to have ntributed to the decline in the response rate.
Specific changes to the survey form were made in January 1980: (1.) Highest earned degreets of professional S/E staff were requested by employment status rather than by function in which primarily employed; (2) a question relating
to part-time employment of men and women by field was added; (3) the item on technicians was deleted; and (4) FTE's became the only measure of separately budgeted R\&D involvement. Even though the FTE concept provided a more sensitive measure of academic R\&D involvement, many institutions have indicated that their records do not readily yield data in this format.

The majority of nonrespondents in 1980 were small institutions: Of the 326 Ph. D.-granting institutions, only 56 were nonrespondents.-Résponse rates are shown in table A-4.

Table A-4. Response rates to survey of scientific and engineering personnel by highest degree granted: January 1980

Highest. degree granted	Number surveyed	Number of re- spondents	Percent of total
Total	2,247	1,364	60.7.
	326	270	82.8
Master's	320	282	88.1
Bachelor's and no science degree	1,601	812	50.7

Source National Science Foundation

estimates for nonresponse

In order to develop national totals of academic employment of scientists and engineers, estimates were made by NSF for institutions that failed to respoped by the close of the survey in mid-September 1980. These. "imputations" for nonrespondents were based upon key item totals reported or estimated in the. 1978 full-scale survey cycle. Totals for these înstitutions were inflated or deflated according to overall rates of changes reported by institutions at the same degree level and type of control (public or private). Detailed impùtations were then made on the basis of the distribution computed for similar in, stitutions, a method that has been used in the survey since 1977.

The combined imputed and estimated amounts totaled 69,600, or 21 percent of the total academic S/E force (table A-5). . The largest imputation rates occurred for data collected on the number of FTE scientists and engineers involved

Table A-5. Estimated and/or imputed amounts for scientists and engineers employed at universities and colleges: January 1980

Oficiplines	Total	Full time	Part time	Totál FTE's'	FTE's devoted to separately buctgeted R\&D
Scientists and engineers, total ..	69.646	61.653	19.661	76.287.7	13,981.3
	5.919	4,233	1.673	.6.405.1	1,541.2
Aeronautical \& astronautical engineers \qquad	- ${ }^{-133}$	191	42	250.2	169.4
Chemical engineers	283	218	- 65	365.4	- 124.8
Civilengineerś.	1.031	716	315	1.022 .3	142.2
Electrical engineers	1,728	1,223	-505	1,672.0	429.4
Mechanical engineers	1.288	$934{ }^{\circ}$	348	1,266.7	193.0
Other engineers	1,622	1,154	461	1.733 .5	- 482.4
Physical scientists, total Chemists	8,104	6,442	1,662	8.488 .3	1.720.2
	4,475	3,473	-. 1,008	4,638.3	739.7 .
Physicists	2.918	2,408	511	3,123.4	751.3
Astronomers	51	44	7	92.0	41.1
Other physical scientists	510	379	133	472.6	- 161.1
Environmental scientists, total	1,809	1,240	; 369	1,833.3	514.7
Earth scientists	1,282	1,006	284	1,346.9	234.5
Atmospheric sclentists	112	79	33	96.9	- 45.3
Oceanographers	181	137	44	337.3	202.1
Other environmental scientists	19	11	8	37.2	32.2
Mathematical scientists, total Mathematicians \qquad Computer scientists \qquad Life scientists, total \qquad	9.740	6.447	3.285	9,223.4	622.8
	7.735	5.203	2.526	7.275.7	397.7
	2.002	1.192	808	1.869.7	225.1
	23.163	18.014	5.149	25,197.8	7.937.6
Agriculturalscientists	1.456	7.179	27.	1.803 .7	540.4
Biological scientists	9.590	7.769	.1.835	-10,324.4	3.068 .1
Medical scientists	10,920	8.202	2,704.	11.911 .5	4.162.1
Other life scientists Psychologists, total	494	430	64	626.3	162.0
	7.060.	4.582	2.501	6,517.1	442.9
Social scientists, total	-14.520	9,862	4.650	13;882.0	94ß.6
Economists.	3,711	2,326	1,384	3,544.1	297.3
Sociologists	4,246	2,813	1,429	3,982.9	- 224.9
Political scientists	3,221	2,357	861	3,188.6	166.2
Other social scientists	3,315	2,317	998	3,049,4	258.2

-Full-time-equivalents
5
SOURCE National Science Foundation
in separately budgeted $R \& D$ activities, Imputations and estimations accounted for 25 percent of the R\&D-engaged FTE total. During the last four survey cycles, steady improvement has occurred in the reporting of research involvement of S/E professionals, as universities' record systems have evolved to provide these data by field.

Beginning with the January 1979 sur-- vey, a 2 -year cycle alternating short and long forms was initiated. Item's on sex
and degree level were deleted in the short-form years. The long-form/shortform cyele failed to lower the overall reporting burden of institutions, and in fact caused a disfuption at many small institutions, resulting in an overall lowering of the response rate and a slawdown in the submission of responses. For example, the response rate during the January 1978 short-form survey cycle, which was mailed to 320 doctorate-granting institutions only, was
' 83 percent, about the same rate as reported. in the prior long-form year. During the 1980 long-form survey cycle, however, the response rate dropped to 61 percent. This decline was primarily a result of a dropoff in responses from nondoctorate-granting institutions which had not been surveyed during the preceding short-form year. In tracing the reasons behind this decline, NSF staff learned that during the January 1979 survey, most of these institutions had reallocated their personnel, and in many of these institutions, staff resources we re no longer available when the January 1980 questionnaire arrived on campus.
Respondents at doctorate-granting institutions, which were surveyed in both the long-form and short-form years, indicated that no real reduction had occurred in their reporting burden, and although no significant decline in response rate occurred among doctorategranting institutions, these schools generally indicated their preference for a mare consistent survey format each year. NSF will hherefore no longer use a shortform questionnaire with an abbreviated universe for the S/E personnel survey; the survey effort will return in January 1981 to the former full-scale, long-form data collection effort used through 1978.
Requests for additional information concerning the personnel survey findings should be addressed to Mr. James Hoehn or Mrs. Esther Gisț, Universities and Nonprofit Institutions Studies Group, Division of Science Resources Studies, National Science Foundation, Washington,' D.C. 20550 (202-634-4673). Data tap for January 1980 and prior years may be purchased from:

[^26]
survey of graduate science students and postdoctorals, fall 1979

- Questionnaires for the fall 1979 survèy were mailed to 437 reporting units, at 322 doctorate-granting institutions
and to 315 master"şgranting institutions by January 4, 1980. Thé closeout dita for survey response was-July 9, 1980, by which time all but 14 institutions- 6 doctorate-granting institutions and 8 master s-granting-had submitted responses.

imputation for nonresponse

In order to arrive at universe totals, data were estimated for institutions or departments which failed to return questionnaires. Item totals for which the institutions were umable to provide data were esstimated on the basis of the institution's response in the previous survey, inflated or deflated by a factor derived from those departments of the same degree. leviel and type of control responäăng to both surveyṣ. Detailed data within the iterf were then imputed on the basis of that department's previous tesponse. The response rates at the institutional and department level are shown in table A-6.
The responding departments accounted for almost all the graduate students añ postdoctorates included in the report; estimates made up only 3 percent of the total. Table A-z shows the proportion of the total shown in this publication which was imputed, by level of institution (either dactorateor master's-granting), for S/E graduate students and for postdoctorates.

expansion of the survey system

'One factor contributing significantly to the difficulty of comparing current data with prior years' data lies in the gradual growth of the universe of the survey system. The present Survey of

Graduate Science Students and Postdoctorates is an outgrowth of the departmental application forms which were filled out as part of NSF's Graduate Traineeship Program between 1967 and 1971. Completion of these Departmental Data Sheets was required of departments participating in the program. In 1972, the survey coverage was expanded to include all S/E departments in all doctorate-granting institutions, and in 1975 an abbreviated questionnaire was designed to gather data on S/E departments in master's-granting institutions as well. In 1978, the short form was sent to doctorate-granting institutions only; in 1979, the short form was discontinued and for the first time the same data were cqllected for all graduate S/E departments, whether in doctorate- or master's-granting institutions. The surz vey therefore provides only partial data on master's-granting institutions for 1975 through 1977 and complete data tocompare with doctorate-granting institutions beginning in 1979.

response analysis and dạta quality

To determine the accuracy of the reporting in thefsurvey series, two stuđies have been conducted in recēnt years. The first of these, in 1974, consisted of a series of personal visits and structured interviews at $120 \mathrm{~S} / \mathrm{E}$ departments in 30 institutions;' the second, in 1978, consisted of campus interviews at 45 major research universities. Bothof these studies indicated that records -needed for institutional respónses to

[^27]Table A-6. Institutional and departmental respodnse rates to the survey of graduate science students and posidoctorates by highest degree granted: Fall 1979

'Table A-7. Proportions.of totals imputed, by highest degree granted and enroliment status: 1979

the GSSP survey are much more decentralized than those of the expenditures or personnel surveys. Questionnaires are filled out primarily at the department level, where data on sources of support of graduate students and posddoctorates are most likely to be -available. The level of accuracy, however, may yary considerably from department to department, even within a given institution.
Since 1978, institutional personnel have increasingly been brought into the data editing phase of all three academic. science surveys as well as the Survey of Federal Support to Universities com-puter-generated "Institutional Profiles." The respondents are given the opportunity to make modifications or corrections not only to the current year's data but also to the data shown for earlier
years in the survey series. The trend data shown in the current report, therefore, supersede totals published in previous reports.
Requests for additional information concerning the Survey of Graduate . Science Students and Poştdoctorates should be addressed to Mr. J. G. Huckenpahler, Universities and Nonprofit Institutions Studies Group, Division of Science Resources Studies, National Science Foundation, Washington, D.C. 20550 (202-634-4673). Data types for fall 1979 and earlier years máy be purchased from:

NSF Surveys

Abt Associates, Ino.
${ }^{55}$ Wheeler Street f
umbridge, Massachusetts 02138
(617) 492-7100

the data user guide

In order to inform potential users of the types of institutional data available through the multi-survey data base, Moshman Associates, Inc., has. developed and periodically updates a " "Data User Guide." Copies of the latest adition, dated January 1980, and the January 1981 Addendum may be obtained free of charge by writing to:

Universities and Nonprofit , Institutions Studies Group
National Science Foundation
Room L-602
1800 G Street, N.W.
Washington, D.C 20550

detailed statistical tables

R\&D Expenditures

B-1. National R\&D expenditures by sector: 1972-8138

B-2. National basic research expeniditures byperformer: 1972-81
B-3.- R\&D expenditures at universities and colleges by character of work: fiscal years 1972-7938
$B=4$. Federal obligations to universities and colleges for research and - development by agency and broad scientce/engineering field: fiscal , year 1979
B-5. RisD expenditures at universities and colleges by source: fiscal years 1972-79
B-6. R\&D expenditures at universities and collieges by source of funds, character of work, and science/ engineering fieid: fiscal years 1972-79
B-7. Federally financed R\&D expenditures at universities and colleges 'py character of work and sciencè/ engineering field: fiscal years": -1972-79

B-8. R\&D expenditures at universitles and colleges by institutional control: -fiscal years 1972-79
B-9. R\&D expenditures at universities and colleges b̄y source of funds, character of work, and institutional control: fiscal year 1979
B-10. R\&D expenditures at universities and coileges by geographic distribution: fiscal years 1972-77 and 1979
B-11. Federally tinanced R\&D expenditures at unlyersities and colleges by geographic distribution: fiscal years 1972-77 and 1979
$\mathrm{B}-16$. Scientists and engineers employed at universities and colleges by type of irfstitution and status: January 1973-78 and 1980
B-17. Full-time-equivalent (FTE) scientists and engineers employed at universities and cotheges by type of activity: danuary 1973-76 and 1980 \qquad
4. B-18. Bačhelor's-and master's-degree recipients compared to employment

- • by science/engineering field: 1977
\therefore and 1979
- B-19. Full-time-squivalent (FIE) scientists and engineers engaged n research and development at universities and colleges and in industry: 1974-80...
B-20. Eull-time scientists and engineers employed at universities ánd colleges by field of employment: January 1973-78 and 1980

Science/Engineering Personnel

B-14. Scientists and engineers employed in universities and colleges by science/engineering field and status: January 1973-78 and 1980

46

- B: 12. Total ant federally financed capital

 expenditures for scientific and - engineering activities at universities and colleges by science/engineering field: fiscal years 1972-77 and 1979...B-13 . Total and federally financed capital expenditures for scientific and - engineering activities at universities - and colleges by control: fiscal years 1972-77 and 1979
$\mathrm{B}-21$. Full-time scientists and engineers employed at universities and colleges by field of employment and sex: January 1974-78 and 1980
B-22. Full-time scientists and engineers employed at universities and colleges by control and level of attainment: January 1975-78 and 198050

B-23. U.S. scientists and engineers by sex:1974-7850

B-24. Full-time scientists and engineers employed at universities and colleges by type of institution. control, and sex: January 1980
B-25. Pầrt-time scientists and engineers employed at universities and colleges by type of institution, control, and sex: January 1980

51
B-26. Unemployment rate of U.S. scientists and engineers' by sex: 1974, 1976, and 1978

- B-27. Doctoral scientists and engineersin the United States by race: 1973 and 1979
B-28. Doctoral scientists and engineers employed in academic institutions by science/engineering field and race: 1973 and 1979
B-29. Unemployment rate of U.S. scientists and engineers by race: 1974; 1976, and 1978
B-30/bcientists and engineers employed at universities and colieges by type: January 1975-78 and 1980
B-31. Posidoctorates, graduate research assistants, and R\&D expenditures int doctorate-granting institutlons by science/engineering field: fiscal year 1979

B-32. Pöstidoctorates, graduate research assistants, and R\&D expenditures in doctorates-granting institutions by

- soưrce of support: fall 1974-77 and 1979
B-33. Postdoctorates in doctorategranting institutions by science/. engineering field, institutional control, and citizenship: fall 197954

B-34. Postdoctorates and other nonfaculty
doctoral research staff in all

engineering field and sex: fall 1979

Graduate Enrollment

B-35. Total graduate enrollment in institutions of higher education by field:1974-79

B-36. Science/éngıneering graduate students and scientists and engineers by type of graduate institution: 1974 -80
B-37. Number of degreés granted by institutions of higher education by level and fieid: 1974-7955

B-38. Graduate students in doctorate-
granting instltutions by status and
B-38. Graduate students in doctorate-
granting instlutions by status and . science/engineering field: fall 1974-7956
` B -39. Full-time science/engineering graduate students in doctoràtegranting institutions by level of

- study:fall 1974-7956

B-40. Full-time science/engineering graduate students in doctorategranting institutions by source of major support: fall 1974-79 56
B-41. Federal obligatons to universities
B-41. Federal obligations to universitite
and colleges for fellowships, . traineeships, and training grants by, science/engineering field: fiscal years 1973-7957

B-42. Full-time science/engheering graduate students in doctorate-
granting institutions by type of major graduate students in doctorate-
granting institutions by type of major support: fall 1974-77 and 1979

B-43. Full-time graduate students in
doctorate-granting institutions by
sex and science/engineering field:
doctorate-granting institutions by
sex and science/engineering field: fall 1974-77 and 1979

57

B-44. Science/engineerIng doctorate : recipients by sex and science/ engineering field: Juñe 1974-79

B-45 Women in science and engineering by field: 1978 and 1979 .. 58

B-46. Full-time graduate students in doctorate-granting institutions by' sex, squrce, of major support, and area of science/engineering: 1979.

B-47. Full-time science/gngineering graduate students in doctorategranting institutions by citizenship and science/engineering field: fall 1974-77 and 1979

B-48. Total enrollment at instifutions of higher education by statusifiall 1979. 60
B-49. Graduate enrollment by status: fall 1974-77 and 1979 60°

B-50. Part-tıme science/engineering graduate students in doctorategranting institutions by science/ enginéering field, level of grudy, sex, and type of Control: 1979

TABLE B'-1. - MATIONAL RED EXPENIDITURES oy SEGTOR: *
(DOLLARS IN MILLIONS)

1/ FEDERALLY FUWDED RESEARCH AND DEVELOPMENT CENTERS.
S' ESTIMATE BASED OH DATA COLLECTED FOR DOCTORATE-GRANTING INSTITUTIONS ONLY.

TABLE B-2. - MATIOMAL BASIC RESEARCH EXPENDITURES BY PERFORMER:
(DOLLARS IN MILLIONS)

	YEAR, ,	, total	FEDERAL GOVERMMENT	INDUSTRY	$\left\{\begin{array}{l} \text { UNIVERSITIES } \\ \text { COLLEGDES } /= \end{array}\right.$	ALL OTHER
1972		\$3,788	\$584			
1973		3,924	586	631	2,053	\$554
1974		4,207	664	699	2,154	690
1975 1976	…	4,575	701 736	730	2,410	734
1976		4,928	738 867	811	2,548	823
1978		6,318	' 973	1,028	3,165 2/1	1,152
1979 1980	[Pri̇i iniol ${ }^{\text {a }}$	- 7, 164.	- 1.026	1, 188	3,552	1,398
1981	(ERS.) ${ }_{\text {(RELIM. }}$	8,772	-1,097	1,350	4,065	1,620

TABLE B-3. CMAD EXPENDITURES AT UWIVERSITIES AMD COLLEEES
(DOLLARS IN MILLIONS)

\square	BASIC RESEARCH ${ }_{3}$		APPLIED RESEARCH ANDDEVELOPMENT	
	CUTR	CONSTART		COMSTAMT
1972	\$2,022	\$2,022	\$608	\$608
1973	2,053	1,967	831	+ 796
1974 ..1....	2,154	1,925	869	777
1975	2,410 2,548	1,958	999 1.180	812
1977	2,548 $+2,795$	1,935	1,180	896 902
1978 1979	- ${ }^{2,165}$	($\begin{array}{r}1,988 \\ \hdashline \quad 2,110\end{array}$	1,268	902 966
1979.	3,552	- 2,182	1,631	1,002

1' BASED ON GMP IMPLICIT PRICE DEFLATOR IN 1972 DOLLARS
2/ ESTIMATE BASED ON DATA COLLECTED FROH, DOCTORATE-GRAHTIMG, IMSTITUTIONS OHLY.
SOURCE: HATIONAL SCIENCE FOUNDATION

TABLE B-4. - FEDERAL OBLIGATIONS TO UNIVERSITIES AND COLLEGES FOR RESEARCH AND DEVELOPMENT BY AGENCY AMO GROAD SCIENCE/ENGINEERING FIELD: FY 1979
(DOLLARS In thousamos)

SOURCE: MATIOHAL SCIENCE. FOUNDATION

TABLE B-5. - RED EXPENDITURES AT UNIVERSITIES AND COLLEGES
(DOLLARS IN MILLIONS)

FISCAL YEAR	TOTAL		FEDERAL		NON-FEDERAL	
	CURRENT.	CONSTANT 1/1	CURRENT	CONSTANT $1 /$	CURRENT	CONSTANT 1/
1972	\$2,630	\$2,630	, \$1,795	\$1,795	\$835	\$835
1973.	2,884	2,762	1,985	1,901	899	861
$1974 . .$.	3,023	2,702	2,032	1,816	991	886
1975 ...	3,409	- 2,769	2,288	1,8188	1,121	911
1976	3,727.	- 2,830	2,512	1,907	1,215	923
1977 1978 2\%.......	4,063	2,890 3,076	2,729	1,941	1,334 1,557	949 1,038
1979	5,614	3,184	3,057 3,432	- 2,038	. 1,557	1,038 1,076

1/ BASED ON GNP IMPLICIT PRICE DEELATOR IN 1972 DOLLARS.
SOURCE: NATIONAL SCIENCE FOUNDATION FROH DOCTORATE-GRANTING INSTITUTIIONS ONLY.
table b-G. - rad expenditures at universities and colleges by source of fünd, character of mork, AND SCIENCE/ENGINEERING FIELD: FISCAL YEARS 1972-79
(DOLLARS in thousands)

1/ ESTIMATE BASED ON DANA COLLECTED FROH DOCTORATE-GRANTING INSTITUTIONS ONLY.

tABLE B-7. - FEDERALLY FIMAMCED RLD EXPEMDITURES AT WIVERSITIES AMD COLLEGES BY CHARACT色 OF WORK
(DOLLARS IN THOUSAMDS)

TABLE B-8 BMSTROD EXPEMOITURES AT WUIVERSITIES AND COLLEGES
(DOCLARS IN MILLIONS)

TABLE B-9. - RRD EXPENDITURES AT UNIVERSITIES AND COLLEGES BY SOURCE OF
FUNDS, CHARACTER OF HORK, AND INSTITUTIONAL CONROL: FISCAL YEAR 1979 . (DOLLARS IN MILLIONS)

(dOLLARS In THOUSAMOS)

TV IM 1978 DATA MERE COLLECTED OMLY FRON DOCTORATE-GRANTIMG INSTITUTIONS.

TABLE B-11. - FEDERALLY FIMAYCED RAD EXPENDITURES AT UWIYERSITIES AND COLLEGES \therefore (DOLEARS In thoósamds)

 SOURCE: NATIONAL ŞCIENCE FOUNDATION

FIELD -	1972	1973	1974	1975	1976	1977	1979
ALL SOURCES, TOTAL EMGIHEERING PHVSICAL SCIĖNCOES ENVIRONMENTAL SCIENCĖS MATHEMATICAL / COHPUTER SCOĖĖĊĖS LIFE SEIENCES PSYCHOLOGY SOCIAL SCIENCEOS OTHER SCIENCES, \mathbf{H}.E......	¢912-487	8835,362!	\$841.560		1,042.370	\$959,491	\$722.904
	137,351	55,800 106,210	91,701	118,299 80,282	81,661	87,715	95,399
	27:1871	106,739	24,5881	35,278	73, 4 461	65,154 28,052	64,551 25,293
	517,712	408,016	23,670	15,042 668,715	24,677		27,465
	19,007	439,5841	49, ${ }^{\text {1511 }}$	668,715	706,8481		7,877
	59,993	61,215	59,329	69,659	44,0201	31,738	20,932
	41,366	37,593	38,215	37,602	53,334;	66,5991	31,984
FEDERAL SOURCES, TOTAL	236.836	224.651	225.681!	270,082	206, 710 ,	195,462	167.975
Engineering PHKSUCAL SCIĖMCES ENVIROMHENTAL SCIENCEOS MATHEMATICAL/COHPUTER SCIE EOCOE S LIFE SCIENCES PSYCHOLOGY SOCIAL SCIEMCES OTHER SCI ENCES, $\dot{H}, \dot{E} . \dot{C}$.	21,082	13,547	42,702		20,200		
	27,892	24,496	20,721	18,862	19,174	21,89	
	8,4861		7,0841	5,960	6,312	9,273	8,970
	473	161,907			2,0		3,049
	3,663		2,536	2,24	53,531	137	2,567
	10,939	5,3691	2,5361	2,245	1,9671		1,767
	8,1051	5,230	4,139\|	4,1991	1,672	2,341	2,069
OTHER SOURCES, TOTAL	675.651 !	611.2	615,872	746.320	835.660	764.02	561.922
EMGINEERING environag ital sciencees MATHELATICAL/COMPUTER SCOĖEOCȮS LIFE SCIENCES PSYCHOLOGY SOCIAL SCIENCES OTHER SCIENCES: $\mathrm{N} . E$ E. C .							
	63,8681 109,439	81, 2141	72,7471	54,200 61,420	61,461	70,496	73,339
	18,701	20,778,	17,504,	29,3181	42,843,	18,779	16,323
	365,6131	326,994,	355, 313	499,257	553,629	23,244 505,039	24,416 363,910
	15,344 49,054	326,798 $34 ; 465$ 55,846	12,9751	49,2801	553,3171	505,039 10,301	363,910 6,036
	49,0541	55,846	54,862	46,904	42,214;		18,863
			3, 076		51,662	63,25	26,930

J' DATA MERE MOT COLLECTED IN 1978.
SOURE: MATIONAL SCIENCE FOUNDATIOK
table's b-13. - total and feperally financed capital expendijines for scientific and engineering activities at UNIVERSITIES AND COLLEGES BY CONTROL: FISCAL YEARS $1972-77$ AND $1979 \downarrow$
(DOLLARS IN THOUSANDS)

CONTROL	1972	1973	1974	1975	1976	1977	1979
\all sources, total	\$912.487	\$835,862	\$841.560	51.016.402	\$1.042.370	\$959.491	\$729.904
PUBLIC PRIVATE	664,684	610,331 225,531	641,971	775,709 240,693	751,965 290,405	$\begin{array}{r} 686,664 \\ 272,827 \end{array}$	$\begin{array}{r} 495,175 \\ 234,729 \end{array}$
FEDERAL SOURCES, TOTAL	236.836	224.651	225.681?	270.082	206.710	195,462	167.975
PUBLIC PRIVATE	160,808	157,610	173,713 51,968	198,404 71,678	126,537	118,962	96,837
OTHER SOURCES, TOTAL	675.651	611.211	615.879	746,320	835.660 !	764.029!	561.929
$\begin{aligned} & \text { PUBLIC } \\ & \text { PRIVATE } \end{aligned}$	$\begin{aligned} & 503,876 \\ & 171,775 \end{aligned}$	452,721	$\begin{aligned} & 468,258 \\ & 147,621 \end{aligned}$	$\begin{aligned} & 577,305 \\ & 169,015 \end{aligned}$	625,428 210,232	$\begin{aligned} & 567,702 \\ & 196,327 \end{aligned}$	$\begin{aligned} & 398,338 \\ & 163,591 \end{aligned}$

table, b-14. - scientists and ewgimers employed at uwiversities ano coll leges by science/engimeerimg

 -
table b-15. - doctorate recipients in sciemce amo emgineerimg by field: sume 1972-79

FIELD	1972	1973	. 1974	1975	1976	$\mathrm{C}^{1977}{ }^{\circ}$	1978	1979
TOTAL	19.556	12,555 ${ }^{\prime}$	12.086	19,048	18.790	18.281	17.956	18.242
ENGINEERS	3,475	3,338	3,144	2,959	2,791	12,641	2,423	2,494
PHYSICAL SCIENTISTS	3,646	3,439	3,126	3,055	2,858.	2,719	1* 2,611	2,675
ENVIROMMENTAL SCIENTISTS	- 650	662	674	695	714	691)623.	646
MATHEMATICAL AMD COMPUTER SCIENTISTS	1,281	1,222	1,196	1,149	1,003	95	959	$\stackrel{877}{ }$
LIFE SCIENTISTS	4,914	4,983	4,790	4,884	4,841	4,767	1.4,887	5,076
PSYCHOLOGISTS	2,262	2,444	2,587	2,749	2,878	2,960	- 3,049	3,081
SOCIAL SCIENTISTS	3,328	3:467	3,569	3,558	3,705.	3,544	3,404	3,298

SOURCE: HATIONAL RESEARCH COUNCIL, SUMARY RERORT, DOCTORATE RECIPEETS EROÚU UMITED STATES UHIYERSILIES, JUNE 1972 THROUCA JUNE 1979, SURVEY OF EARNED DOCTORAIES.
\bullet

table b-17. - full-time equivalent (fie) scientists and engineers employed at universities and colleges by type

TYPE OF ACTIVITY.	2973	1974	1975	1976	1977	1978	1980	$\begin{gathered} \text { PERCENT CHANGE } \\ 1973-80 \end{gathered}$
total fre's	235.050	238,055	244,381	252.555	258.966	271.560	282,173	20.0
	186,896	47,952 190,103		52,916 49,639	54,408 204,558	215,919 215,641	225,116	21.8 19.6

SOURCE: MATIOMAL SCIEHCE FOUNEATIONLY FROH DOCTORATE-GRANTING INSTITUTIONS.

TABLE B-18. - BACHELOR'S'- AMD MASTER'S-DEGREE RECIPIENTS COHPARED TO EMPLOYHENT BY SCIENCE/ENGINEERING FIELD: 1977 AND 1979

	-					
FIELD OF-SCIENCE/ENGINEERINǴ	$\begin{gathered} \text { BACHELOR'S } \\ \text { DEGREE } \\ \text { RECIPIENTS } \\ 1977 \end{gathered}$	$\begin{aligned} & \text { NUMBER } \\ & \text { EMPLOYED } \\ & \text { IN FIED, } \\ & 1979 \end{aligned}$	PERCENT EMPLOYED	$\begin{aligned} & \text { HASTER'S } \\ & \text { DEGREE } \\ & \text { RECIPIENTS } \\ & 1987 \end{aligned}$	$\begin{aligned} & \text { NUMBER } \\ & \text { EMPLOYED- } \\ & \text { IN FIELD, } \\ & 1979 \end{aligned}$	$\begin{aligned} & \text { PERCENT } \\ & \text { EHPLOYED } \end{aligned}$
TOTAL, ALL FIELDS*	222.200	84.000	37.8	45,300.	27.700	61.1
ENGINEERING . ${ }^{\text {a }}$	45,800					86.6
	45,800 8,400	39,500.	86.2	14,900 2,300	12;900	86.6 56.5
ENVIROHHENTAL SCIENCES HATHEHATICAL/COHPUTER SĊĖĖĖĖ-	7,800 18,100	2, 10 100	35.9	2,100	1,100	66.5 52.4
COMPUTER SCIENCES	18,800	10,800	89.7	5,600	3,200	57.1
MATHEMATICS	12,300 '	5,900	84.5	2,600	1,700	65.4
LIFE SCIENCES	52,300	18,200	34.8	8,100	1,500	50.0 50.6
SOCIAL SCIENCEXS ${ }^{\text {a }}$.	36,300 53,500	4,000 5,000	11.9 9.3	6,400 5,900	3,300	51.6
S SIENCES	53,500	5,000	9.3	5,900	1,800	30.5

SOURCE: NATIONAL SEIENCE FOUNDATION f_{i}
table b-19. - full-time equivaleri (fTE) scientisis am emgineers emgaged in research amd development at UWIVERSIties ako colleges ano in industry: 1974-1980

3' IN 1979, DATA HERE COLLECTED ONLY FROH DOCTORATE-GRA SOURCE: WATIONAL SCIENCE FOUNDATION

TABLE B-20. - FULL-TIME SCIEMISTS AMOVEWGIMEERS EMPLOYED AT UWIVERSITIES AND COLLEGES

DATA MOO AVAILABLE PRIOR TO 1980 .
DATA MOT AVALABLE PRIOR TO 1976 .

TABLE B-21. - FULL-TIME SCIENISTS AND ENGINEERS EMPLOYED AT UNIVERSITIES AND COLLEGES

1/' DATA MERE NOT COLLECTED IN 1973 AND 1979. 3/ DATA NOT AVAILABLE PRIgR TO 1980.

TABLE 8-22. FY FOL-TIME SCLENTISTS AMD EMGIMEERS EMPLOYED AT UWIVERSITIES AND COLLEGES - BY CONTROL AND LEVEL OF ATTAINHENT: JANUARY 1975-78AMD 1980 1/

COHTROL AMD LeVEL OF ATtAINHENT	1975.	1976	2977	1978	1980	AVERAGE 1 AVEUAL PERCENT CHANGE $1978-80$
ALL INSTITUTIONS						
toral	223,336	229.823	236.192	242.063	1255.659	2.8\%
PH.D. OR SC.D.						
ED. D. 1/:	122,760	126,478	131,056	135,601 3,332	140,477 3,242	1.8
	29,148	30, 399	30,834	31, 332.	3,242	-1.4
MASTER'S':	54,719 16,709	53,717 16,153	54,076	54,531	56,811	6.6 2.1
	16,709	16,153	16,653	16,966	20,521	10.0
PUALIC INSTITUTIONS						
MTOTAL	+156.819	161.755	166,424	169.289	. 177.24	2.5
PH.D. OR SC.D.	84,539	87,395				
ED.D. $1 /{ }^{\text {d }}$		2,690	2,908	23,739	36,266	1.7
MiSter is	15,525	16,248	16,32	16,425	17,409	3.0
BACHELOR'S.'	43,351	42,785	43,388 13,150	43,816	45,694	2.1
_PRIVATE INSTITUTIONS						
TOTAL	66.517	68.068	69.768	72.774	77.712	3.3
PH.D. OR SC.D.	38,221	39,083				
		39. 686			44,211	2.0 -2.9
Misíer D.S. ETO	13,623 11,368	13,851 10,932	14,272	+15,200	17,199	6.3
BACHELOR'S	11,368	10,932 3,516	10,688 3,503	10,715 3,796	11,117	1.9 10.4

SOURCE: MATIONAL SCIEMCE FOUHDATIOM

TABLE B-23. - U.S. SCIENTISTS AND ENGINEERS BY. SEX:

SEX	- 1974	1976	1978	PERCENT Change	
				1974-76	1976-78
TOTAL AAL U.S. SCIENTISTS AND ${ }_{x}$ ENGTHEERS	2.481.800	2.705 .800	2,741,400	2.0	1.3
MEN MOWEN	$2,265,000$ 216,800	2,455,800	$2,475,300$ 266,100	'8.4	6.8
FULL-TIME SCIENTISTS AMD UNIVERSITIES AND COLLEGES ..	218.407	229.767	242.063	5.2	5.4
MEN HOHEN	$\begin{array}{r} 186,283 \\ 32,124 \end{array}$	194,273 35,484	$\begin{array}{r} 203,136 \\ 38,927 \end{array}$	4.3 10.5	4.6

SOURCE: NATIOMAL SCİENCE FOUNDATION.

TABLE B-24. - FULL-TIME SCIENTISTS AMO EMGINEERS EMPLOYED AT UNIVERSITIES AMD COLIEGES

TYPE OF INSTITUTION AND CONTROL	total	Hen		HOMEN	
		NUHEER	P.ERCENT OF TOTAL	NUHBER	$\underset{\substack{\text { PERCENT } \\ \text { TOTAL }}}{\text { OF }}$
	255,659 177 77,947	211,299 147,392 63,907	82.6% 82.8 82.2	44,360 30 13,555	17.4% 17.2 17.8
InSTITUTIONS GRANTING:	-				
doctorate in ste PRIVATE	180,433 123 $56 ; 458$ 56	150,246 103,374 46,872	83.3 83.4 83.0	30,187 20,584 9,963	16.7 . 16.6 17.0
	27,953 22,988 2, 871	23,467 18,671 4,796	84.0 84.6 81.7	4,486 3,411 1,075	$16: 0$ 95.4 18.3
	20,788 6,979 13,709	19,030 5 $11 ; 929$	81.9 85.0 80.4	3,758 1,050 $\mathbf{2}, 708$	18.1 15.0 19.6
	702 455 247		90.3 92.7 85.8	68 33 35	9.7 7.3 14.2
2-YEAR İNSTITUTIONS UBLIC PRIVATE	25,783 24,473 $\times 1,310$	19,922 18,996 .926	77.3 77.6 70.7	5,861 5,477 384	22.7 22.7 29.3

SOURCE: NATIONAL SCIENCE FOUNDATION

TABLE B-25. - PART-TIME SCIERTISTS AND ENGINEERS EMPLOYED AT UHIVERSITIES AND COLLEGES* BY TYPE OF INSTITUTION, CONTROL, AND SEX: JANUARY 1980

SOURCE: NATIONAL SCIENCE FOUNDATION

TABLE 8-26. - UNEMPLOMHENT RATE OF U.S SCIEMTISTS, AMD ENGINEERS DY SEX: 1974, 1976. גMD 1978

YEAR AND SEX		$\begin{aligned} & \text { EHPLOYED } \\ & \text { SCIENTISTS } \\ & \text { ENGINEERS } \end{aligned}$	$\begin{aligned} & \text { LWEMPLOYED, } \\ & \text { SEEKIMG } \\ & \text { EMPLOYMENT } \end{aligned}$	UNEMPLOYMENT
1974, Total	2.288 .000	2.248.200	39.800	1.7
MEANEN	$2,104,700$ 183,300	$2,072,100$ 176,100	$32,600^{\circ}$ 7,200	1.5 3.9
1976, TOTAL	21451,700	2.337 .200	74.600	3.0
- MEN HCN	$\begin{array}{r}2,240,000 \\ \hline \quad 211,700\end{array}$	2,179,900	60,100 14,500	2.7 6.8
1978, TOTAL	2,507,600	2.473 .200	34.400	1.4
MEM	$2,270,400$ 237,200	$\begin{array}{r} 2,241,700 \\ 231,500 \end{array}$	28,700 5,700	1.3/

SOURCE: MATIONAL SĊIEMCE FOUNDATION

TABLE B-27. - DOCTORAL SCI ENTISTS AMD ENGINEERS
IN THE UNITED STATES BY RACE: 1973 AND 1979

TABLE B-28, - DOCTORAL SCIENTISTS AMD ENGIMEERS EMPLOYED IN ACADEMIC IMSTITUTIONS 8Y SCIENCE/ENGINEERING FIELD AND RACE: 1973 AND 1979.

1	1973				1979				PERCENT CHANGE, 1973-79			
FIELO	UnITE	8LACX		ASIAM / pacific ISLAMDER	HITIE	BLACK	AMERICAN	$\begin{aligned} & \text { ASIAM }{ }^{\prime} \\ & \text { PACIF IC } \\ & \text { ISLAMDER } \end{aligned}$	MHITE	8LACX	$\begin{aligned} & \text { AMERICAM } \\ & \text { IMDIAM } \\ & \text { i. } \end{aligned}$	$\begin{aligned} & \text { ASIAM } \\ & \text { PACIFIC } \\ & \text { ISLAMDER } \end{aligned}$
TOTAL	115.922	1.381	-2741	5.155	152.302	2.118	618	2.826	31.4	53.6	125.5	90.6
EMGIMEERS PHSICAL sci EMVIRONGENTAL SCIENTISTS mathematical amo	11,467 19,283 4,830	66 279 6	26 34 13	1,001 1,093 120	14,686 23,724 5,750	$\begin{array}{r}89 \\ 235 \\ \hline\end{array}$	15 120 12 11	1,642	28.1 23.0 19.0	34.8 -13.3 -33.3	-42.3 252.9 -15.4	64.0 64.6 59.2
COHPUTER SCIENTISTS LIFE SCIENTISTS pSYCHOLOGISTS SOCJAL SCIEMTIŚtis	10,575 35,658 13,263 20	115 455 171 297	$\begin{array}{r}10 \\ -\quad 74 \\ \hline 3\end{array}$	494 1,541 115	12,936 46,199 16,981	133 646 331	52. 168 136	$\begin{array}{r}941 \\ 3,334 \\ \hline 229\end{array}$	22.3 29.6 28.0	15.7 42.0 93.6	420.0 127.0 216.3	99.2 90.5 116.4 99.1
SOCIAL SCIENTISTS	20,846	297	74	791	32,033	$\begin{array}{r}681 \\ \hline\end{array}$	116	1,699	28.0 53.7	93.6 129.0	216.3 56.8	99.1 113.7

SOURCE: MATIONAL SCIENCE FOU'̛́DATION, SURVEY OF DOCTORATE RECIPIENTS

TABLE B-29- - UWEAPLOHMENT RATE OF U.SASCIEMTISTS AND EMGINEERS BY-RACE: 1974, 1976, AND 1978

year and race	LABOR FORCE	EMPLOYED SCIENTISTS emgine ers	UNEMPLOYED, SEEKING, EMPLOYENT	UNEMPLOYHENT RATE
1974, total	2.288,000	2.248,200	39.800	1.7
HHITE	2,188,500	2,152,900	35,600	
SLACK ASIAN	35,500 41,200 12200	3, 32, 500	3,000	8.5
OTHER	- $\begin{aligned} & \text { 42,'800 }\end{aligned}$	40,500 22,500	700	1.7 1.3
1976, total	2.451.700	2,377,200	74.600	3.0
HITE	2,348,200	2,278,800	69,400	3.0
BiAACK	36,2000 42,600	2,273,000	3,400 1,200	3.0 8.3 2.8
OTHER \ldots :...........:	42,600 24,800	- $\begin{array}{r}\text { 41,800 }\end{array}$	1,200	2.8
1978, TOTAL	2.507 .600	2,473.200	34,400	1.4
	2,393,600	2,360,900		
BiACK	行 $\begin{aligned} & 39,600 \\ & 59\end{aligned}$	2,36,900		1.5
ASTAH	51,300	50,500	800 400	1.6

SOURCE: HATIONAL SCIENCE FOUNOATION
TABLE B-30. - SCIENTISTS AND ENGINEERS EMPLOYED AT UNIYERSITIES AND COLLEGES

TYPE OF ACADEMIC EMPLOYMENT,	1975	1976	'9977	1978	19800
total	278,919	288,221	297.768	307.642	324.843
POSTDOCTORATES 2/	16,660	17,034	18,653	19,753	18,589
- ALL OTHER ACADEMIC SCIENTISTS AND ENGINEERS	262,259	271,187	279,115	287,889	306,254

1/ DATA ON POSTDOCTORATES MERE NOT COLLECTED IN FALL 1978.
3' AT DOCTORATE-GRANIME INSTITUTIONS OWLY; DATA, ARE FOR FALL SEMESTER OF PRECEDING YEAR.
SOURCE: NATIONAL SCIENCE FOUKDATION

TABLE B-31, -- POSTDOCTORATES, GRADUATE RESEARCH ASSISTANTS AND RRD EXPEMDITURES (DOLLARS IN HILLIONS)

FIELD	POSTDOCTORATES		GRADUATE RESEARCH ASSISTANTS		RZD EXPEMDITURES	
	NEMBER	PERCEMT DISIR8UTION	NUMBER	$\begin{aligned} & \text { PERCENT } \\ & \text { DISIRI- } \\ & \text { BUTION } \end{aligned}$	AMOUNT	$\begin{aligned} & \text { PERCENT } \\ & \text { DISTRI- } \\ & \text { BUTION } \end{aligned}$
TOTAL	18.589	100.0	48.497	100.0	55.093	100.0 ${ }^{+}$
	1,073 4,028	5.8 -21.7	12,684	26.2 16.0	708 543	13.9
ENYIRONHENTAL SCIEMCE ${ }^{\text {P }}$	-329'1	21.7 $=\quad 1.8$	3,452	16.0 7.1	543 420	10.7 8.2
MATHEMATICAL AND COMPUT	203	1.1		3.4		2.8
LIFE SCIENCES PSYCHOL OGY	12,089	65.0	- 15,129	31.2	2,785	54.7
PSYCHOLOG SOCIAL SCIENCES	456	2.5	2,333	11.8	+ 938	1.8 5.5
OTHER SCIENCES, W.E.E.C.	411	2.2	5,533	11.4	278 125	5.5 2.5

source: hational science foundation

TABLE B-32. - POSTDOCTORATES GRADUATE RESEARCH ASSISTANTS AND RED EXPENDITURES IN DOCTORATE-GRANTING INSTITUTIONS BY SOURCE OF SUPPORt: FALL 1974-77 AND 1979 \rightarrow (DOLLARS IN HILLIONS)

2/ DATA NERE MOT COLLECTED IN FALL 1978
SOURCE: WATIONAL SCIENCE FOUNDATIONATOR EXPRESSED IN 1972 dOLLARS.
GON

INSTITUTIONAL COMTROL, AND CITIZENSHIP: FAL SCIENCE/ENGINEERIMG FIELD, INSTITUTIONAL CONTROL, AND CITIZENSHIP: FALL 1979

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{FIELO*} \& \multirow{3}{*}{NUMBER} \& \multirow[t]{3}{*}{} \& \multicolumn{4}{|c|}{CONTROL} \& \multicolumn{4}{|r|}{CITIZENSHIP} \\
\hline \& \& \& \multicolumn{2}{|c|}{PUBLIC} \& \multicolumn{2}{|c|}{PRIVATE} \& \multicolumn{2}{|c|}{FOREIGM} \& \multicolumn{2}{|c|}{U.S.} \\
\hline \& \& \& MUMBER \& \begin{tabular}{l}
PERGENT \\
DISTRI- \\
BUTION
\end{tabular} \& number \& \begin{tabular}{l}
PERCENT \\
DISIRI- \\
BUTION
\end{tabular} \& NUMBER \& PERCENT
DISRI-
BUTION \& NUMBER \& \begin{tabular}{l}
PERCENT
DISTRI- \\
BUTION
\end{tabular} \\
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \multirow[t]{7}{*}{ENGINEERING PHYSICAL SCI ĖNĊĖS ENYIRONMENTAL SCIENĊĖS hathematical and computer SCIENCES LIFE SCIENCES PSYCHOLOGY SOCIAL SCIENĊĖŚS} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 1,073 \\
\& 4,028 \\
\& 329
\end{aligned}
\]} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
5.8 \\
21.7 \\
01.8
\end{array}
\]} \& \& \& \& \& \& \& \& \\
\hline \& \& \& \multirow[t]{5}{*}{\[
\begin{array}{r}
546 \\
2,405 \\
205 \\
95 \\
6,575 \\
208 \\
234
\end{array}
\]} \& \multirow[t]{5}{*}{\[
\begin{array}{r}
5.3 \\
23.4 \\
2.0 \\
0.9 \\
64.0 \\
2.0 \\
2.3
\end{array}
\]} \& \multirow[t]{6}{*}{\[
\begin{array}{r}
527 \\
1,623 \\
124 \\
108 \\
5,514 \\
248 \\
177
\end{array}
\]} \& \multirow[t]{6}{*}{\[
\begin{array}{r}
6.3 \\
19.5 \\
1.5 \\
1.3 \\
66.3 \\
3.0 \\
2.1
\end{array}
\]} \& \multirow[t]{6}{*}{\[
\begin{array}{r}
663 \\
1,992 \\
112 \\
9,94 \\
3,079 \\
34 \\
101
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
10.9 \\
32.8 \\
1.8
\end{array}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{r}
r \\
\hline 1210 \\
2,036 \\
217
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
3.3 \\
16.3 \\
1.7
\end{array}
\]} \\
\hline \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \\
\hline \& 12,089 4 \& 65.0
2.5 \& \& \& \& \& \& 50.7 \& 109
9,010 \& 0.9
72.0 \\
\hline \& \(\begin{array}{r}456 \\ \hline \quad 411\end{array}\) \& \(\begin{array}{r}2.5 \\ \hline 2.2\end{array}\) \& \& \& \& \& \& -0.6

1.7 \& 9
422
310 \& $\begin{array}{r}12.04 \\ 3.4 \\ \hline\end{array}$

\hline \& \& \& \& \& \& \& \& \& 310 \& 2.5

\hline
\end{tabular}

TABLE B-34J- POSTDOCTORATES AND OTHER "NONFACULTY DOCTORAL RESEARCH STAFF
IN ALL GRADUATE INSTITUTIONS EY SCIENCE/ENGINEERING FIELD AMD SEX: FALL 1979

FIELD	POSTDOCTORATES			OTHER NON-FACULTY DOCTORAL RESEARCH STAFF		
	TOTAL	MEN	HOHEN	TOTAL	HEN	HOMEN
TOTAL	18.639	15.250	- 3.389	2.697	2.080	617
ÉNGIMEERING			49			
PHYSICAL SCIENCES 	$\begin{array}{r}1,059 \\ \hline 329\end{array}$	$\begin{array}{r}\text { 3,623 } \\ \hline 293\end{array}$	386	265 469	253	12
ENYIRONMENTAL SCIENCES ${ }^{\text {MATHEMAT ICAL/COHPUTER SCIĖMCĖS }}$	329 .203	293 181	36 22	105 108	418 .97	7 7
LIFE SCIENCES PSYCHOLOGY	12, 105	9, 513	2,592	1,108	$\begin{array}{r}1,074 \\ \\ \hline\end{array}$	452
SOCIAL SCIENĊĖS	456	298. 268.	158 146	63 181	130 134	33 47

SOURCE: NATIONAL SCIENCE FOUNDATION ${ }^{\text {. }}$

1/ AT ALL GRADUATE INSTITUTIONS AS REPORTED BY MATIDML CEETER FOR EDUCATION STATISTICS, DEPARTHENT

SOURCR: HATIONAL SCIEME FONS AND POSTDOCTORATES, AMHUAL SERIES,
SOURCE: WATIONAL SCIENCE FOUMDATION

TABLE 8-36. - SCIENCE/EMGINEERIMG GRADUATE STUDENTS AND SCIENTISTS AND ENGINEERS BY TYPE OF GRADUATE INSTITUTION: 1974-80

1

TABLE 8-37. - NuMBER OF DEGREES GRANTED B'Y INSTITUTIONS OF HIGHER EDUCATION BY LEVEL AND FIELD: 1974-79

	academic year				-	
	1973-74	1974-75	1975-76	1976-77	1977-78	1978-79
BACHELOR'S AMD FIRST PROFESSIONAL DEGREES, TOTAL	1.008.654	987,922	997.504	993.008	997.165	1.000.562
SCIEMCE AMD EMGIMEERING HEALTH FIELDS ALL OTHER FIELOS	$\begin{array}{r} 305,062 \\ 61,025 \\ 642,567 \end{array}$	$\begin{aligned} & \mathbf{2 9 4}, 920 \\ & 70,058 \\ & \mathbf{6 2 2}, 944 \end{aligned}$	$\begin{aligned} & 292,174 \\ & 79,126 \\ & 626,204 \end{aligned}$	$\begin{array}{r} 288,543 \\ 82,378 \\ \mathbf{6 2 2}, 087 \end{array}$	$\begin{array}{r} 288,167 \\ 86,012 \\ 622,986 \end{array}$	$\begin{array}{r} 288,625 \\ 899,951 \\ 621,986 \end{array}$
MASTER'S DEGREES, TOTAL	278.259	293.651	313.00\%	318.241	312.816	302.075 ?
SCIENCE AND ENGINEERING HEALTH FIELDS ALL DTHER FIELDS	$\begin{array}{r} 54,175 \\ 99,741 \\ 216,363 \end{array}$	53,852 10,862 228,957	$\begin{array}{r} 54,747 \\ 12,696 \\ 245,558 \end{array}$	$\begin{array}{r} 56,731 \\ 13,092 \\ 248,418 \end{array}$	56,237 14,483 242,096	$\begin{array}{r} 54,456 \\ 15,637 \\ 231,982 \end{array}$
doctor's degrees, total	33.826	34.086	34.076	33,244	32.156	32.756
SCIEMCE AMD ENGIMEERIMG HEALTH FIELDS ALL OTHER FIELDS	$\begin{aligned} & 17,865 \\ & 15,588 \end{aligned}$	17,784 15,618	$\begin{aligned} & 17,288 \\ & 577 \\ & 16,212 \end{aligned}$	$\begin{aligned} & 16,937 \\ & 15,738 \end{aligned}$	$\begin{aligned} & 16,196 \\ & 15,354 \end{aligned}$	$\begin{aligned} & 16 ; 363 \\ & 15,675 \end{aligned}$

[^28]TABLE B-38. GRADUATE STUDENTS IN DOCTORATE-GRANTING INSTITUTIONS
BY STATUS AND SCI ENCE/ENGINEERING FIELD: FALL 1974-79

SOURCE: NATIOWAL SCIENCE FOUNDATION

TABLE B-39. - FULL-TIME SCIEṄCE/ENGINEERING, GRADUATE STUOENTS IN DOCTORRTE-GRANTING INSTITUTIONS EY LEVEL OF STIUYY: FALL $1974-79$

	YEAR	$\cdots,{ }^{\prime \prime}$	TOTAL	$\begin{aligned} & \text { FIRST } \\ & \text { YEAR } \end{aligned}$	FIRST YEAR
1974					
1975			195,906 210,822	73,745 79,459	122,161
1976			214,729 218,445	78,458	136,271 137,732
1978 1979.			218,445	80,713 74,456	137,732
1979:			224,057	73,263	150,794

SOURCE: WATIONAL SCIENCE FOUNDATION

TABLE B-40. - FULL-TIME SCIENCE/ENGINEERING GRADUATE STUDENTS IN DOCTORATE-GRANTING INSTITUTIONS BY SOURCE OF MAJOR SUPPORT: FALL 1974-79

1'O INCLUOES SUPPORT FROH STATE AMR LOCAL GOVERNMENTS.
SOURCE: NATIONAL SCIENCE FOUNDATIO
$\$$
(DOLLARS IN THOUSAMDS)

- FIELD	1973	$\dot{1974}$	1975	1976	1977	1978	1979
TOTAL	5287.210	S 326.600	\$ 201.273!	s 174,871	S 184.671	S 205.865	S 204.805
ENGINEERIMG	12,631	10,3611	10,821	- 8,200	10,015	12,626	13,682
PHYSICAL SCIENCES	- 3,9011	-4,051	3,238	3,0491	3,675	1,441	5,473
ENYIROWHENTAL SCIENCES :	4,1241	4,927	- 3,2851	1,629	764	663	1,507
MATHEMATICAL/COHPUTER SCIENCES	3,1891	3,975	2,3891	1,956	2,875	558	1,558
LIFE SCIENCES	179,222	225,575	135,600	105,631	118,799	130,840	136,009
PSYĊHOLOGY	20,513	27,209 \|	12,819	9,541	27,274	16,937	15,296
SOCIAL SCIENCES	43,515	40,741	30,2431	39,7431	21,755	20,311	18,198
OTHER SCIEMCES, N.E.C.	20,125	9.761	2,878	5,222	20,514	22,489	13,082

- SOURCE: MATIONAL SCIENCE FOUWDATION

TABLE B-42. - FULL-TIME SCIENCE/ENGINEERING GRADUATE STUDENTS IM DOOCTORATE-GRANTING INSTITUTIONS

Y'OURCE: NERE NOT COLLECTED IN FALL 1978.
SOURAL SCIENCE FOUNDATION

TABLE B-43. F FULL-TIME GRADUATE STLOENTS IN DOCTORATE-GRANTING INSTITUTIONS

[^29]TABLE B-44. - SCIENCE/ENGINEERING, DOCTOẢATE RECIPI ENTS BY SEX AMO SCIEMCE/ENGINEERING.FIELD: JUNE 1974-79

SOURCE: MATIOMAL RESEARCH COUMCIL, SURVEY OF EARNED DOCTORATES

TABLE B-45. - HOMEN IN SCIENCE AND EMGINEERING BY FIELD: 1978 AND 1979

SOURCE: DOCTORATE-GRANTING IMSTITUTIONS OHLY.
SOURCE: MATIONAL SCIENCE FOUMDATION AND MATIOMAL RESEARCH COUNCIL, SURVEY OF DOCTORATE RECIPIEMTS.

TABLE I-46. - FULL-TIME GRADUATE STUDEMTS IM DOCTORATE-GRAMTIMG IMSTITUTIONS BY SEX, SOURCE OF MANOR SUPPORT,

SOURCE: MATIONAL SCIEMCE FOMNDATION:

TABLE B-67. - FY FUL-TIME SCIEMCE/EMGIMEERIMG GRIDUATE STUDENTS IM DOCTORATE-GRANTIMG IMSTITUTIOWS

table b-48. -- total emrollhent by insiliutions of higher education

Status	$\text { FALL } 1979$	
	mumber	PERCENT DISTRIGUTION
total enrollment, all fieldos	11.707 .126	a 100.0
PuRL Time	6,901,426	59.0 41.0
griduate enrollhent, all fields	18074.922	100.0
FULL TIME PART TITE \ldots..................	436,458 636,464	40.6 59.4
GRADUATE EMROLLMENT, SCIEMCE/ ENGINEERING FIELÓS ¿ 1	321,770	100.0
full time	$\begin{array}{r} 224,057 \\ 97,713 \\ \hline \end{array}$	$\begin{aligned} & 69.6 \\ & 30.4 \end{aligned}$

SOURCE: DOCTORATE-GRANTIMG IMSTITUTIOMS OMLY
MATIOMAL CEMTER FOR EDUCAIION STATIStics; demarthent of education, and
MATIONAL SCIEMCE FOUNDATION

1/ DATA HERE MOT COLLECTED IN FALI 1978.
SOURCE: MAIIOHAL CENTER FOR EDUCATION STATISTICS, DEPARTMENT OF EDUCATION, AMD

SOURCE: MATIOWAL SCIENCE FOUMDATION

reproduction of survey instruments

Scientific and Engineering Expenditures at Ưniversities and Colleges, page
FY'1979 and Instructions64
Scientific and Engineering Personnel Employed at Üniversitiés and Colleges, January 1979 andlastructions

\qquad 69
Graduate Science Student Support and Postdoctorates,Fall 1979, and InstructionsA.80

NATIONAL SCIENCE FOUNDATION
 Washington, D.C. 20550

SURVEY OF SCIENTIFIC AND ENGINEERING EXPENDITURES AT UNIVERSITIES AND COLLEGES, FY 1979

(Current and Capital Expenditures for Research', Development, and Instruction in the Sciences and Engineering)

Organizations are requested to complete and return thi form to: ${ }^{\text {- }}$

NATIONAL SCIENCE FOUNDATION 1800 G Street, N.W.
Washington', D.C. 20550
Attn: UNISG
This form should be returned by February 1, 1980. Your cooperation in returning the survey questionnaire promptly is very important.

Financial data are requested for your institution's 1979 fiscal year.

This information is solicited under the authority of the National Science Foundation Act of 1950, as amended. All information you provide will be used for statistical purposes only. Your response is entírely voluntary and your faiture to provide somie or all of the information will in no way adversely affect your institution:

All financial data requested on this form should be reported in thousands of dollars; for example, an expenditure of $\$ 25,342$ should be rounded to the nearest thousand dollars and reported as $\mathbf{\$ 2 5}$. '

Where exact data are not available, estimates are acceptable. Your estimates will be better than ours:

.

Include data for branches and all organizational units of your institution, such as medical schools and agricultural experiment stations. Also include hospitals or clinics owned. operated, or controlied by universities, and intégrated operatıonally with the clinical programs of your medıcal schools. Exclude data for federally funded 'research and development centers (FFRDC's). A separate questionnaire is included in this package if your institution administers an FFRDC. If you have any questions please contact Jim Hoathn (202-634-4674).
Please enter the beginning and ending dates of your institution's fiscal year for which you are reporting oh this form:

Please note in space below:
(1) Ahy suggestions to improve the design of the survey questionnaire, (2) any suggestions to improve the instructions, or (3) any comments on significant change in R\&D in your institution,
(Attach additional sheets, if necossary.)
 ν

ITEM. 1. CURRENT EXPENDITURES FOR SEPARATELY BUDGETED RESEARCH AND DEVELOPMENT (R\&D) IN THE SCIENCES AND ENGINEERING, BY SOURCE OF FUNDS AND BASIC RESEARCH, FY 1979 (Include indirect costs)

4.

ITEMS 1. \& 2. INSTRUCTIONS

. Separately budgefed resegrch and development (R\&D) includes all funds expended for activities specifically organized to produce research outcomes and commisgoned by an agency either external to the institution or separately budgeted by an organizational unit within the institution Include equipment purchased under research project awards as part of "current funds." Research funds subcontracted to outside organizations should also be included Exclude training grants, public service grants, demonstration projects, etc.

Under a Federal Government. Report grants and contracts for R\&D by all agencies of the Federal Government including indirect costs from these sources.

Under b State and local governments. Include funds for R\&D from State, county, municipal, or other local governments and their agencies Include here State funds which support R\&D at agricultural experiment stations.

Under c Industry. Include all grants and contracts for R\&D from profitmaking organizations, whether engaged in production, distribution, research, service, or other activities. Do not include grants and contracts from nonprofit foundations financed by industrh which should be reported under All other sources.

Under d - Institutional funds. Report funds which your institution spent for R\&D p大tivities including indirect costs from the following sources (1) General-purpose State or local government appropriations, (2) generai-purpose grants from industry, foundations, or other outside sources, (3) tuition and fees, (4) endowment income In addition, estimate yofir institution's contribution to unreimbursed indirect costs incurred in association winh-R\&D projects finançed by outside organizations, and mandatory cost sharing on Federal and other grants. To estimate unreimbursed indirect costs, many institutions use a yniversity-wide-negotiated indirect goskrate inultiplied by the base le.g., diredt salaries and wages, etc.) minus actual indirect cost recoveres. If yout institution now separate/y budgets what was previously classified as departmental research, these data should be ancluded in line d.

Under e All other sources. Include foundations and voluntary health agencies grants for R"\& , as well as of other sources not eisewhere classified. Funds from foundations which are affiliated with or grant solely to your institution should be yeluded under d. Institutional funds Funds for R\&D received from a health agency that is a unit of a State or local government should be reported under State and local - governments. Also include gifts from individuals that are restricted by the donor to research'.

Please exclude from your response any R\&D expenditures in the fields of education, law, humanitles, music, the arts, physical education, liberary science, and all other nonscience fields.

ITEM 2. TOTAL AND FEDERALLY FINANCED EXPENDITURES FOR SEPARATELY BUDGETED RESEARCH AND DEVELOPMENT, BY FIELD OF SCIENCE, FY 1979 (Include indirect costs and equipment).				
Field of xcience	Illustrative disciplines		(Dollars in thousands)	
			(1) Total	(2) Federal
a. ENGINEERING . (TOTAL)	Aeronautical, agricultural, chemical, civil, electrical, industrial, mechanical, metaliurgical, mining, nuclear, petroleum, bio- and biomedical, energy, textile, archifecture	7410	$\$$	$\$$
b. PHYSICAL SCIENCES (TOTAL)		1420		
(1) Astronomy	Astrophysics, optical and radio, x-ray, gamma-ray, neutrino	1421	-	
(2) Chemistry	Inorgaņic,' organo-metallic, prganic, physical, analytical, pharma-, ceutical, polymer science (exciode biochemistry)	1422	-	-
(3) Physics	Acoustics, atomic and molecular, condensed matter, elementary particles, nuclear structure, opyics, plasma	1423		.
(4) Other	Used for multidisciplinary projects within physical sciences and for disciplinès not requested separately	1424		-
c. ENVIRONMENTAL SCIENCES (TOTAL)	ATMOSPHERIC SCIENCES: Aeronomy, solar weather modification, meteorology, extra-terrestrial atmospheres GEOLOGICAL SCIENCES: Engineering geophysics, geológy, geodesy, geomagnetism, hydrology, geochemistry, paleomagnetism, paleontology, physical geography, cartogräphy, seismology, sqi! sciences OCEANOGRAPHY: Chemical, geological, physical, marine geophysics, marine biology, biological oceanography	1430	\because	
d. MATHEMATICAL AND COMPUTER SCIENCES (TOTAL)		1440		-
(1) Mathematics	Algebra, analysis, applied mathematics, foundations and logic, . geometry, numerical analysis, statistics, topology	1441		-
(2) Computer sciences	Design, development, and application of computer capabilities to data storage and manipulation; information science	1442		\cdots
e. LIFE SCIENCES (TOTAL)		1450		
(1) Biological sciencés	Anatomy, biochemistry, biophysics, biogeography, ecology, embryology, entomology, genetics, immunology, microbiology, nutrition, parasitology, pathology, phármacology, physical anthropology, physiology, botany, zoology	1451	$\cdots \cdot$	\cdots
(2) Agricultural	Agricultural chemistry, agronomy, animal science, conservation, dairy science, plant science, range science, wildlife	1452	$\cdots \quad$.	-
(3) Medical	Anesthesioldfy, cardiology, endocrinology, gastroenter ology, hematology, neurology, obstetrics, opthalmology, preventive . medicine and community health, psychiatry, radiology, surgery, veterinary medicine, dentistry, pharmacy -	1453	.	\bigcirc
(4) Other	Used for multidisciplinary projects within life sciences	1454	4	.
f. PSYCHOLOGY (TOTAL)	Animal behavior, clinical, educational, experimental, human development and personality, social	1460	.	,
g. SOCIAL SCIENCES (TOTAL)		1470		
(1) Economics	Econometrics, international, industrial, labor, agricultural, public finance and fiscal policy	1471	,	\cdots
(2) Political 3cience	Régional studies, comparative government, international relations, legal systems, political theory, public administration	1472	- . . .	
(3) Sociology $\quad \because$	Comparative and historical, complex organizations, culture and social structure, demography, group interactions, socia! problems and welfare, theory	1473	. ${ }^{\text {c }}$	
(4) Other	History of science, cultural anthropology, linguistics, socioeconomic geography	1474	,	
h. OTHER SCIENCES, n.e.c. (TOTAL)*	To be used when the multidisciplinary and interdisciplinary aspects make the classification under one primary field impossible	1480	$\cdots \times$	
i. TOTAL (SUM of a through h) Check to insure that column totals are identical with data reported in item 1.		1400	,	,

-PLEASE EXCLUDE FROM YOUR RESPONSE ANY R\&D EXPENDITURES IN THE FIELDS OF EDUCA MUSIC, THE ARTS, PHYSICAL EDUCATION, LIBRARY SCIENCE, AND ALL OTHER NONSCIENCE FIELDS.

ITEM 3. CAPITAL EXPENDITURES FOR SCIENTIFIC ANḊ ENGINEERING FACILITIES AND EQUIPMENT FOR RESEARCH, DEVELOPMENT, AND INSTRUCTION, BÝ FIELD OF SCIENCE AND SOURCE'ÖF'FUNDS, FY 1979

ITEM 3. INSTRUCTIONS

-•

Report funds for facilities which were in process or completed during FY 1979. Expenditures for administration buildings, steach plants, residence halls, and other such facilities should be excluded ulêss utilized principally for research, development, or instruction in engineering or in the sciences Land costs should be excluded Exclude small equipment items in your current fund account costing approximately $\$ 300$ or less per unit or as recommended by the Joint Accounting Group (JAG) or as determined by your institutional policy, these are to be reported under items 1 and 2.

Facilitıes and equipment expenditures include the following (a) Fixed equipment such as built-in equipment and furnishings, (b) movable scientific equipment such as oscilloscopes and pulseheight analyzers, (c) movable furnishings such as desk, (d) architect's fees, site work, extension of utilities, and the building costs of service functions such as integral cafeterias and bookstores of a facility, (e) facilities constructed to house separate components such as medical schools' and teaching hospitals; and (f) special separate facilities used to house fientific apparatus such as accelerators, oceanographic vessels, and computers.

ITEM 4. TOTAL AND FEDERALLY FINANCED CURRENT FUND EXPENDITURES FOR SCIENTIFIC RESEARCH EQUIPMENT, BY FIELD OF SCIENCE: FY 1979

ITEM 4. INSTRUCTIONS

Please report below FY 1979 expenditures for scientific research equipment purchased from current funds only. If actual expenditure data are not readily available, please provide estımates. Equipment is defined.to include articles of nonexpendable tangible personal property having a useful life of more than ohe year and an acquisition cost of $\$ 300$ or more per unit. Institutions may use their own definition provided that it at least includes all equipment defined here.
O

NOTE. These research equipment data should also be included with the separately budgeted R\&D expenditures reported in items 1 and 2.
For column (1) report current funds expenditures from all sources. Federal Government, State, county, municipal, or other governments and their agencies (including State funds supporting research and development at agricultural experiment stations), industry, private foundations and voluntary health agencies, individuals and associations; and institutional funds.

For column (2) Federal Government sources include funds from grants and contracts for research and development by all agencies of the Federal Government.

NATIONAL SCIENCE FOUNDATION
Washington, D.C. 20550

SURVEY OF SCIENTIFIC AND ENGINEERING PERSONNEL EMPLOYED AT UNIVERSITIES AND COLLEGES, JANUARY 1979

This survey is directed toward doctorategranting institutions and their affiliates only. All other institutions will be surveyed in 1980. Organizations are requested to complete and return this form to:

NATIONAL SCIENCE FOUNDATION

1800 G Street, N.W. Room L-602
Washington; D.C. 20550 Att: UNISG

Name and address of institution:
(Please correct if name or address has changed)

If your institution does not grant a doctorate degree in the sciences or engineering, please indicate this in the REMARKS of the questionnaire and return it to the address above.

This form represents a reduction in the number of items requested in January 1978 and will be sent on a biennial cycle to doctorate-granting institutions only.

This survey requests scientific and engineering employment data according to institutional recordkeep- ing conventions: The completed 1979 questionnaire should be returned by April 20, 1979. Your prompt cooperation will be appreciated. If you determine, however, that you cannot respond by April. 20, notify NSF and request an extension of time.

Please read the enclosed instructions before completing this form. If you have any questions, contact Mr. James Hoehn or Ms. Esther Gist (202-6344673). Please complete all columns; estimates by academic officials will be better than NSF estimates.

All entries should be in whes numbers; please do not enter decimals or fractions, except in column 6 where one decimal place is optionsl.

SURVEY POPULATION

Include data for all organizational units öf your institution that employ scientists and engineers, such as medical schools, or agricultural experiment stations, nonacademic departments and institutes. (include regional campuses and branches). Also include any hospital or clinic owned, operated; or controlled by your university and integrated operationally with the clinical programs of your medical school.

If your institution has a branch campus, a listing is enclosed showing those branches considered by NSF to be part of your institution. If any data for any of these campuses are not included in your final report, please indicate this when submitting your questionnaire.

Exclude data for any federally funded research and development center (FFRDC) administered by your institution; these are to report separately. See listing of FFRDC's administeréd by-academic institutions.

CHECK LIST

() 1. Are all entries rounded to whole numbers? Please do not enter fractions or decimals, except in column 6 where one decimal place is optional.
() 2. Do the data add to subtotals?
() 3, Are all columns completed? YQUR astimates will be better than OURS. An explanation of estimates may be noted on a separate sheet or in the REMARKS.
() 4. Are all branches and components such as medical school, computer center, and as ricultural experiment station included?
() 5. Have you included all postdoctorals?
() 6. Have you excluded graduate students?

CONFIDENTIALITY

The, National Science Foundation recognizes that its ability to gather much of the enclosed information would be severely impaired if it could not be held in confidence. Please indicate below the number of any items which would not be supplied but for assurance that the source will be held in confidence. The Foundation will hold in confidence such information to the extent permitted.by law.

What month did the data come from that were used to complete this survey?

Are there any significant changes in data reported in previous surveys?
Please compare your January 1979 personnel data with your survey response for January 1978, particularly for the totals. Please explain below or on a separate sheet any significant changes; and, where possible, indicate any required adjustments in data reported in previous surveys.

Total full time scientists \& engineers

Line 2700, col 2 | | |
| :--- | :--- |
| Tótal part-time scientists \& engineers | Line 2700, col 3. |

Line 2700, col 4

REMARKS

What methods and source records were used for estimating R\&D effort?

Please indicate problem's encountered in estimating R'丷ㄹD-related activity.

PLEASE TYPE OR PRINT
NAME OF PERSON SUBMITTING THIS FORM

NATIONAL SCIENĊE FOUNDATION
WASHINGTON, D.C. 20550

SURVEY OF SCIENTIFIC AND ENGINEERING PERSONNEL EMPLOYED AT UNFVERSITIIES AND COLLEGES . JANUARY 1979

INSTRUCTIONS ȦND DEFINITIONS

Introduction

The National Science Foundation requests your cooperation in completing the attached questionnaire covering the personnel characteristics of your institution as they relate to the sciences and engineering. This form requests employment data in 1979 according to institutional recordkeeping conventions. The questionnaire should be completed and returned to NSF by April 20,1979 . If you determine, however, that you will not be able to respond by that date, please notify NSF and request an extension of time.

Where data reported in the current survey differ significantly from those reported' in the previous. survey, please indicate the reasons for the difference, such as "opening of new medical school," etc., at the end of the questionnaire in the "Remarks" section, or on a separate sheet of paper.

The survey procedures are outlined in flow chart format. (See pp 5-8.)
If you have any questions regarding information requested on this form, write or telephone Mr. James Hoehp or Ms. Esther Gist at the Universities and Nonprofit Institutions Studies Group, Division of Science Resources Studies, 'National Science Foundation, 1800 G Street, N.W., Roonfl-602, Washington, D.C. ' 20550 (Telephone: 202/634-4673). Additional forms, as well as copies of previous responses, may be ${ }^{*}$ obtained by writing to the above address.

Survey.Instructions

1. Survey Population

This survey, conducted biennialty, covers•professional employment at all academic institutions granting a doctoral degree (i.e., Ph.D., M.D., D.D.S., etc.) in ány of the sciences or engineering (S/E) disciplines. The institutional response to this - survey should reflect personnel activity in all branches
and other units of the parent institution, including regional campuses, medical schools, or an agricultural experiment station.

If your institution has one or more branch campuses, a listing is enclosed showing those branches considered by NSF to be part of your institution for survey purposes. If any data for any-of these campuses are not included in your response to NSF, please indicate this under "Remarks" when submitting your questionnaire.

$$
{ }^{2}-
$$

Federally funded kesearch and development centers (FFRDC's) are to report their data separately from the administering university; see the listing of $\mathrm{FF}_{\text {R }} \mathrm{RDC}$'s administered by academic institutions ($p 4$).

2. Survey Time Period

The January date eferenced in this questionnaire is the point-of time when this survey is conducted rather than the actual reporting date of data compiled for NSF. For institutions reporting on the basis of central record systems, data should reflect the date when your files are "frozen"' for annual personnel reports. Many institutions, especially those with State affiliation, use their central records compiled in the preceding fall of each year to report to NSF. Please indicate the reporting date of data for your institution in the space provided, n the back of the questionnaire.

3. Profetional Employment.

The termy "professional," for purposes of this survey, refers to all persoṇ paid a salary or stipend by the responding institution who work at a level at which the knowledge acquired by academic training equal to a bàchelor's degree in science or engineering is éssential in the performanee of duties. Many institutions, with central reporting systems use headcounts of exempt employees, i.e., those employees who are in the exempt category of the Fair Labor Standards Act -
as amended. Exempt employees are nof eligiblé for overtime payment. Others use EEO6 concepts.
Include: S/E personnel with faculty status, , bostdoctorals,' and other pros sssional employees such as systems analysts in computer centers.

Exclude: (1) Personnel on sabbatical or-other leave status; (2) personnel employed in branches of your institution located in foreign countries; (3) ưnpaid yoluntary staff; (4) person "unpaid,' by the uniyersity but paid, by the medical school; (5) student health service personiel; (6),those agricultural extension personnel primarily involved in home economics and 4-H youth programs; (7) administrative offieers above the level of department chairpersons with titles such as. president, academic dean, dean of faculty, provost, chancellor, etc., even though they may devote part of their time to teaching and\%or research; (8) ali graduate students.

4. Assignment of Scientists and Engineers (S/E) to NSF Disciplines

Determination of whether professional employees. should be reported in the NSF personnel survey as "s'cientists and engineers" and their associated disciplines is done by most respóndents onthe basis of departmental structures. After parficular departments are selected for finclusion in the NSF personnel survey, respondents úsually classify headcounts of all professional employees into varioy S/E disciplines according to their primary or pome department of assignment. Where individual assignments are splitin-. to two departments on a 50 -percent basigy classification into. a single NSF discipline should be made according to institutional conventions.
See classification of disciplines of employment in the sciences and engineering for the broad and detailed S / E_{1} disciplines of eniplo ${ }^{2}$ yment corresponding to those shown on the questionnaire, with illustrative categories of each discipline (p 4). This Atsciplineoriented taxonomy is used by institutions that compile. their own departmental groupings for this NSF survey. As a separä̈é enclosure in this survey package, you will also find a computer-generated List of Graduate Programs. ${ }^{2}$ This listing is intended to serve as an additional guideline to asssist you in determining how to classify your professional personnel as "scien-:
\% 'Somefnstitutions without comprehensive central records on the numbers of postdoctorals base their response to this survey on data gathered in the office of the graduate dean as part of NSF's Survey of Graduate Science Sfudent Support and Postdoctorals.
 ed from the NSF Survey of Graduate Science Student Support, Fiful 1978.
tists and engineers" into various disciplines. While most respondents report S/E headcounts based on departmdntat structurest NSF recognizes that because of the multidisciplinary nature of many academic activities, degree specialties and departmental assignments may differ (i.e., a Ph.D. in mechanical engineering may be assigned to the department of orthopedics). To promote ease of reporting and consistency of data among institutions, it is suggested that, where these differences are not significant, all professionals in a department be assigned to a single discipline. In other instances, where sizable differences occur, institutional respondents may choose to report professionals employed in a single department into two dy more disciplines for the NSF personnel -report. For example, an institution may have a -single department of electrical engineering and com: puter science and report individuals into two separate disciplines on the NSF personnel survey according to their degree specialitiès.
It is important that respondents inclugde in the survey scientists and engineers who are appointed to organizational units that are not part of any academic department. For example, scientists and engineers employed at a computer center that is no affiliated with a particular acadenic department should be included in the survey. The most prevalent reporting practice for these nonacademic units is to assign groups of individuals to NSF disciplines according to their degree specialties, espefáally when multidisciplinary activities are prominent.

5. Medical and Clinical Disciplines

For purposes of this survey, all M.D.'s, D.D.D.S.'s, - etc., with faculty or acaderiic appointments are to be reported, including postdoctorates. NSF conisiders fáculty status given to physicians, dentists, public health speccialists, pharmacists etc., to be an indicator of significant inyolvement if teaching, clinical investigation;*or other R\&D adfivitios.
Exclude. (1) All medical pfactitioners, sugh as nurse antesthetists, occupational, theräpists, physical therapists, interns; (2) nurses with or without faculty oräcademic appointments who argpriffarily involved in direct patient care; (3) scientiets whose primary employment is at independent hpspitáls even though they may perform seme teảching or research functions for your institution through cooperatî́e agreements; (4) unpaid voluntary staff at medital or dental schools; and, (5) monedical residents unless research training under the supervisign of a senior mentor is the ' primép purpose of the appoîntment.

6. Headcounts of Full-time Scientists and Engineers

Full-time employees are those individuals available for full-time assignments at the date used for reporting in this survey, or those who are designated as "full time" ih an official contract, appointment, or agreement. Determination of "full-time" designation shotuld be based on institutional recordkeeping conventions and standards. Avoid double counting; if, for example, individuals are fullstime employes but their assignments invelve more than one department (or campus), they should be counted as one full-time employee acçording to their primary or home department of ofsignment (or campus):
(7. Full-Time-Equivalent (FTE)
The FTE reporting concept should reflect the actual utilization of S / E professionals in various disciplines and their involvement in separately buageted R\&D activities. While headcounts are usually reported on the basis of primary department of assignment, FTE reporting in various NSF disciplines should reflect. multiple appointments. For example, an individưal with a 60 -percent appointment in electrical engineering and a 40 -percent appointment in computer science would be reported in FTE's in two NSF disciplines according to the $60-40$-percent split in departmental assignments. Accordingly, the FTE concept converts the number of persons with part-time or split appointments among various disciplines or activities to an equivalent namber of full-time persons, in accordance with institutionally agreed upon conventionsu:
The procedures used to compile FTE data vary from institution to institution, depending largely on the recor's available. Generally, there are two categories of records available to institutions büdgeting information describing the allocation of personnel resources and/or data reflecting actual rather than planned utilization o ${ }^{\frac{8}{t}}$ the'resources.

In converting S/E headcounts into FTE's; the - following method is suggested:

Categorizè headcodints of all exempt employees' in S/E departments, ?medical. schools, agricultural experiment stations, research inistitutes, and other institutional organizational units into one of the NSF disciplines according. to primary assignment;
b. Within each ${ }^{\circ}$ discipline, differentiate employees as being either full time or part time (according to institutional practices);
c. Calculate the full-timerenalents of full-time S/E personnel. Use budgefary or resource utilization records to report S / E employees with split appointments between departmefts and/or institutional units, and distribute these data ac- . cording to appropriate NSF disciplines;
d. Calculate the full-time-equivalents of part-time S7E personnel and merge them into appropriate NSF disciplines.

8. Research and Development (R\&D)

R\& \dot{D} açtivities are systematic, intensive studies directed toward fuller knowledge of the subject studied. For purposes of this survey, report only the full-time-equivalent involvement of persons engaged in separately budgeted research and development. Separately budgeted research and development includes all activities specifically organized to produce research outcomes and commissioned by an agency either external to the institution or separately budgeted by an organizational unit within the institution.

Exclude: Time spent bly professional employees on training grants, public service grants, demonstration projects, etc.

Estimating the division of time allocated or spent by individuals in separately budgeted R\&D programs is difficult for maṇy institutions. Again, procedures uśed to supply these datarary among institutions and the extent ${ }^{3}$ to which central feporting is feasible depends, by and large, on the degree to which budget/personnel/financial records -are mechanized and linked. Among the procedures used by various institutions are the following:
' a. Using sóme gene ally héld criteria at the institutional or departmental levels (i.e., three-fourths for instruction, one-fourth for research);
by Estimating separately budgeted R\&D invòlvetrènt or assignment obtained from payroll records, personnel recoìds, or from employee contracts '(i.e., salaries paid from separately budgeted R\&D funds may be compared with total academic salaries of individuals); ${ }^{*}$ 。
c. Asking research administrators, department chairpersons, or heads of other organizational units to furnish'estimates of separately budgeted
-s R\&D involvement.
d. Using faculty activity analyses in institutions. where these are regularly conducted.

Federally Funded Research and Development * Centers (FFRDC's)

For purposes of this survey, FFRDC's are defined - as R\&D organizations exclusively or substantially financed by the Government and administered on a contractual basis by educational institutions or other organizations. The following is a current list of FFR ${ }_{2} \mathrm{C}$ C's administered byuniversities and colleges:

Ames Laboratory
Argonne National Laboratory
Brookhaven National Laboratory
Center for Nakal Analyses
Cerro Tololo Inter-American Observatory

- E. O. Lawrence Berkeley Laboratory
${ }^{`}$ E. O. Lawrence Livermore Laboratory
Fermi National Accelerator Laboratøry
Jet Propulsion Laboratory
Kitt.Peak National Observatory Lincoln Laboratory Los Alamos Scientific Laboratiyy National Astroperay and Ionosphete Center National Center for Atmospheric Research National Rad o Astronomy Observatory Oak Rid dit trsoçiated Universities Plasma Physics Laboratory Space Radiation Effects Laboratōry Stanford Linear Accelerator Center

Classification of Disciplines of Emptoyment in the Sciences and Engineèring

ENGINEERING

Aeronautical \& Astronomical: aerodynamics, aerospace, space technology.
Chemical: ceramic, petroleum, petroleum refining process.
Çivil: architectural, hydraulic, hydrologıc, marine, sanıtary and environmental, structural, transportation.
Electrical: communication, electronic, power.
Mechanical: engineering mechanics.
Other Engineering: agricultural, industrial and management, metallurgical and materials, mining, nuclear, ocean engineering systems, textile, welding.

PHYSICAL SCIENCES

Chemistry: analytical, inorganic, organo-metallic, organic, pharmaceutical, physical, polymer science (exclude biochemistry).
Physics: acoustics, atomic and molecular, condensed matter, elementary partucles, nuclear structure, optics, plasma.
Astronomy: laboratory astrophysics, optical astronomy, radıo astronomy, theoretical dstrophysics, X-ray, gamma-ray, neutrino astronomy.
Other Physical Sciences: used for multidisciplinary fields within physical sciences.

ENVIRONMENTAL SCIENCES

(TERRESTRIAL AND EXTRATERRESTRIAL)

Earth Sciences: engineering geophysics, general geology, geodesy
and gravity, ggomagnetism, hydrology, inorganic geochemistry - isotopic geonemittry, organic geochemistry, lab gẹphysics, palcomagnetism, paleontology, physical geography and car: tography, seismology.
Almospheric Sciences: aeronomy, solar, weather,modification, extraterrestrial atmospheres, meteorology.
Oceanography: bological oceanography, chemical oceanography, geological oceanography, physical oceanography, marine geophysics.
Othe Environmental Sciences: used for multidisciplinary fields within environmental sciences.

MATHEMATICAL AND COMPUTER SCIENCES

Mathematics: algebra, analysis, applied mathematics, foundations and logic, geometry, numerical ańalysis, statistics, topology.
Computer Sciences: computer programming,' computer and information sciences (general); design, development, and application of computer capabilities to data storage and manipulation; informatioh sciences and systems; systems analysis.

LIFE SCIENCES

Agricultural Sciences: agronomy, anjimal science, dairy science, food science and technology', forestry, horticulture, poultry sclence.
Biological Sciences: anatomy, bacteriology, biochemistry, biogeography, biophysics, ecology, embryology, entomology, evolutionary biology, genetics, immunology, microbiology, nutrition and metabolism, parasitology, pathology, pharmacology, physical anthropology, physiology, plant sciences, radiobiology, systematics, zoology.
Medical Sciences: ${ }^{\text {internal medicine, neurology, ophthalmology, }}$ preventive mepficine and public health, psychiatry, radiology, surgery, veterinary medicine, dentistry, pharmacy, podiatry, anesthesiology, chemotherapy, dermatology, geriatrics, nuclear medicine, obstetrics, gynecology, oncology, pediatrics, physical medicine and rehabilitation.
Other Life Sciences: all other health-related disciplines* ${ }^{4}$.
PSYCHOLOGY: animal behavior; clinical psychology; comparative psychology, counseling and guidance; development and personality; educational, persqnnel, vocational psychology and testing; experimental psychology; ethology; industrial and engineering psychology; social psychology.

SOCLAAL S. SICIENCES

Economics: agricultural economics; econometrics and economics statistics; history of economic thought; international economics; industriai, labor and agricultural economics; macroeconomics; microeconomics; public finance and fiscal policy; theory; economicsystems and development.
Soclology: comparative and historical, complex orgánizations, culture and social structure, demography, group interactions, socíal problems and social welfare, sociological theory.
Political Science: area or regional studies; comparative government; history of political ideas; international relations and law; national, political and legal systems; political theory; public administration.
Other Social Sciences: cultufal anthropology, criminology, history of science, linguistics, socioéconomic geography, urban studiés.
'Personnel employed as computer programmers should not be reporifd a
professionals.
-Exd
-Exclude personnel primanly involved in direct patient care.

. Flow Charts

Institutions who automate NSF survey data or plan to - or even engage in manuál data processing - may -be assisted by these charts.

STEP 3:
Collect information on any remaining affiliated entities not covered by files already processed. Such entities might include a regional campus, an agricultural experimint station, a research institute (except for FFRDC's), à computer center, etc. Also check for postdoctorates not inclouded in central files (see footnote to secton 4 in Instructions).

See section 1 in Instructions.

Select personnel exempt from Fair Labor Standards Act. (See section 3 in Instructions.)

See discussions in sections 3 and 4 in instructions.
(Note exclusions listed in section 3 in Instruc. tons (egg., exclude personnel away on sabbatical and voluntary staff).

$$
\because-1 \because
$$

$$
\dot{x}
$$

NOTE: IF YOUR DEPARTMENT DOES NOT ENROL GRADUATE STUDENTS, PLEASE MOVE TO ITEM 8 BELOW.

| FOREIGN STUDENTS | Of the full time gratuate stuctents on line (6), column (J), how many are
 FOREIGN students? | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

6. NUMBER OF PART.TIME GRADUATE STUDENTS*	
PART.TIME TOTAL	(1) ${ }^{\circ}$
Of the part-itime total on line (1), how many are WOMEN?	(2)
Of the part time total on line (1), how many. are FIRSY YEAR?	(3)

Chack List

8. Number ol POSTDOCTORALS and NON-F.ACULTY DOCTORAL RESEARCH STAFF		POSTDOCTORALS						OTHER NON. FACULTY DOCTORAL RESEARCH - STAFF (G)
		SQURCE OF SUPPORT				TOTAL for all sources A thru D (E)	Of the total in E. how many are POREIGN? (F)	
		Federal ${ }^{\circ}$			Non. Federal (D)			
		$\begin{aligned} & \text { Fellowatios } \\ & \qquad \text { (A) } \end{aligned}$	Trainceships (B)					
-TOTAL	(1)				.			- (G)
Of the total on line (1). how many are WOMEN?	(2)			-				*

Please provide eny comments which might explain variances from prior yeur's data:

Item 5:
-

87 NOTE: This information is solicited under the suthority of the Nationst Science Foundation Act of 1950, as amended. Al information you provide will be used for statisticsl purposes
only. Your response is entirely voluntary and your fallure to provide some or all of the information will in no way

INSTRUCTIONS FOR SURVEY OF GRADUATE SCIENCE STUDENTS AND POSTDOCTORALS, FALL 1979

1

General Definitions

A groduot: student is defined as a student enrolled for credil in an advancell-degree program leading to erther a m.ister 9 or Ph.D. degree in fall 1979. M.D., I) V.M.. or D.D.S Landidates. interns. and residents should not her reported unless they are concurrently worhing for " master's or Ph D. in a science or engineering fueld or are enrolled in a joial M.D/Ph D program. Indulduals who already hold an MD, DVM, or DIDS . master's or Ph D degree but who are working. on onother master's or Ph 1$)$ degree are to be counted as graduate students, elfher full or partime. Do not report such individuals as postdoctorals in item 8

Graduate students performing thesis or dissertation research wway from the campuis at Government and contractor-owned fatalities in the United States are to be inchuded as long as they are enrolled for credit in an advanted-deyree program Students enrolled at a branch or extenston cenier in afforeigń country are to be: exchulfol.
A griadmite student. whether full- or part-impe, should be: reported in only one department. If any students are in interdisciphinary programs. please be sure that they are counted only once by their "home" department If a graduale studentis enrolled in an ister-institutional program. please report the student only if the degree will bre kranted by your instifution. Please report in terms of headcounis. not in ful|-hime-equivalent (FTE) lerms

Item Instructions and Definitions

Highest degroe offered, item 4 . Check the item which refersso the highest degree program offered by this scaencor department in fall 1979 If your department d, ex not offirf a xraduate degree, but is a depariment afchincal medicine with or without posidocturals. check (3)
Full-time graduate students, item or A full-tıme grad-- uate student is clefined as a student enrolled for credit
in, an advanced-degree program (not a regular stalf member or a postdoctoral) who is engaged full time in Iraining activities in his/her field of stience. these acpivilies may embrade any appropriate combination of sludy, teaching, and research, depending on your institution's own policy. It your department has no fulltime gafduate students, write "None" in item 5 and move to lem 6 .
Mechanisms of support, item 5, hines 1-5: Reporl each full-ume graduate student according to the type of mopor support received in the fall of 1979. Students who receive fellowships.or troinceships should be reported on lines 1 and 2 , respectively. if ether of these mechanisms constlate the major source of his/her suppurt the Fedral Interagency Commiltee on Education (FICE) differentiates between the two fellowship ond trumep. ship stipends as follows: (1) A fellowship is an award made directly to or on behalf of a student selected in a ñational competition, to enable him to pursue postbaccalaureate traming. and (2) a trameeship ts an educational award to a student selected by his universily Except for the student select on process. The terms and conditions of the two types of awards are generally identical A sludent receivifig primary supporl frum dn assistantship should be classilied as a research assistant on line 3 or as a teaching assistant on line 4 , depending on how he/shespends the majority of his/her time.e g. a graduate assistant devoting most of his/her time to teaching should be classified as a graduate teaching assistant All other full-time graduate students should be reported on line 5.
Studenis receiving financlal assistance, item.5. columns (A) thru (II). Report the number of fulltume graduate students in the appropriate column according to the source of the largest portion of their support. In determining the source of major support. consider only tuntion . and othen academic expenses. If a graduate student. receives strpend support from more than one soarce, choose the major category of support.

Federal sources, columns (A) thru (E): Report the number of full-time graduate students in the appropriate columu where they receive the largest portion of their suppurt F'uN-time graduale students receiving the larg. est puituon of their support. from Federal Governmed louns, hivuld be reported as self-supported, column (I)
Department of Defense (DOD), column (A). Report full:the graduate students receiving support from the Depuitment of the Army. Navy, or Air Furce, Students ret cumb their mufor support frum the V'elerans AdmumisIrallun under the G I. Bill should be reported under culumin (E). "Other Federal Sources," If this form of support does not constutute his/her nopor source, the stathent should be countequin the appropriate column represenling that source.
Department of Health, Education, and Welfare (HEW), columns (B) and (C): Report full-time graduate students recerving supporif from the inslitutes or divisions of the
National Institute of Health (NIH) under the column - ili. supporl from all other components of HEW should be reported under column (C). as indicated below:
National nstitutes of Health (report in column B):
DizisiorleftusearchResources
Fogarty International Center
National Cancer Instulute
National Eye Instilute
National Heacl. Lung, and Blood Institute
National Institùte on Aging

- National Institute of Allergy and Infectoous Diseases

National Institute of Arthrifisa Metabolism. and Digestive Diseases
National Institute of Child Health and Human Development
National Instriute of Dental Research
National Ingithute of Environmental Health Sciences
National Institute of General Medical Sciences
Natiönal Institute of Neurological and Communicative
Disorders and Stroke

Other HEW (reporl in columma.f:

Alcohol. Drug Abuse, and Mehral Health Adminis. . tration (including National Inslitute of Mental Health)
Center for Disease Control
Food and Drug Administration
Heillth Resources Adminisistation
Health Services Administration
National Institute of Education
Office of Education
Sucial and Rehabuhtation Service
Non.Federal sources, columns (F) hru (H)
Instilutional supporfif column (F): Reports full-time graduale students receiving supporl from your own instifution and State and local governments. Funds given to a university by the Federal Government, such as Iraining grant funds. should be reported under the apprnpriate Federal agency and NOT. reporied as institutunal support.
Fgyeign sources, column (\mathbf{G}): Include sapport from any non-IJ.S. source
Other U.S. sources, column (H) Include suppore from nonprofit instlutions, private industry, and all other U.S. sources.
Sehf-supported students, column (1): Include fulllime graduate students whose major source of support is derived from loans from any source and frpm per. sonal or family financial contributions. Full-time gradunte students receiviny the targest portion of their, sup. porl from Federal loans should be reported here.
Women, line 7: Report all women sludents by their source of majtr support. Please note that in each column. data on line 7 should not exceed the iotal on line 6 .
Foreign students, line 8: A foreign full-lime graduate student is defined as an individual who has not attained U.S. cilizenship. Do not include native residents of a US. possession. such as American Samon. Applicants for U.S. citizenship are to be considered as foreign until the date their citizenship becomes effective.)
First-year students, line 9: A.first-year graduate student is defined as one who will have compleled less than a full year of graduate sludy as of the beginning of tha fall term in 1979 in the progrom in which he/she

1
is enfolled for a degree. All other graduate students should be considered heyond thess first year
Part-Hime graduate students, item 6: A part-timegrad. uate stuḍent is defined as a student who is enrolled in an advanced-degree program who is NOT pursuing graduatê work full time as defined in item 5 . Report the total number of part-ime graduate students on line $\mathbb{1}$; if a depariment has no par-time graduate students. enter "None". and movef 10 item 7.
Raclal//elhnic background. ilem 7 (Optional \cap 1979): This item has been designated as, uptional for the fall 1979 survey year, in order to determine the avallability of racial/elhnic data at the depar!ment level. We would appreciate your full cooperation in completung tem 7 this year: however, if data are unavailable. please note this in the "Comments" section at the bottom of the form Racial/ethnic designations as used in this survey do not denote scientific definitions.of anthropological drigins: a graduate student may thus be included in the group to which, he/she :appears to belong, identufies wilh. or is regarded in the community as belonging However. po person should be counted in more than one racial/éthnic group. The following racial/ethnic designations are those defined hy the Office of Civil Rights:

U.S. CITIZFNS:

Biack. non-Hispons, column (A): Report persons having origins in any of the black racial groups (except those of Hispanic origin).
Americun Indıan or Alaskan Native, column (B):
Regport persons having origins. in any of the original peoples of North America.
Asion or Pocific Isiander. column (C): Report persons having origins in any of the original peoples of the Far East. Southeast Asia, or the Pacific Islands. These areas include China. Japan, Korega. the Philippine Islands, and Samoa.
Hispanic, column (D): Report persoons of Mexican. Puerto Rican, Cubag. Central or South American. or other Spanish cullure or origin, regurdless of race.
$\therefore \quad$ White, non-Hispanic, column (E): Report per sons having origins in any of the original peoples

$$
\%
$$

of Europe. North Africa, the Mididle East or the Indian subcontinent, excep:t those of Hispanic origin

- :

In column (F) reporit the' number of foreign students as defined ${ }^{4}$ earlier.
On line I repord the totalthumber of full-urge praduaite students under the appropriate racial/ethmic category. Item 7. line 1. column (G) shopuld equal the full-lime. total reported in item 5 . line 6 . column (I). Similarly: the total number of part-ime graduate sludents should be reported on liñee 2.Iteın 7. line'2. colymn [G]. should equal the part-tyme fotal feported if item ${ }^{6}$. line 1.

Postdoctorals and nonfaculty dotoral research staff, ilem 8 . Under this category. 'ibelude andividuals with science or engineering Ph.D.'s. M.D.'s, D D.S.'s. or DVM s dincluding foremen degrees that are equivalent to U. \dot{S}; doctorates) whatevote full time to research activities or? study in the depariment under lemporary appointmegls carrying no academic rank. Such appointments are jenerally for a specific time permi. They may contripute to the ácalemic program through seminars, lect ufes, or working with graduate studeqnis. Theth postdoctofal aclivities provide addilional training for Hiem. Exclude appoinıments in residency training programs in medical and health prokessions. unless research training under the supervision of a senior mentor is the primary purpose of the appointment. On line 1 . under colimns (A) and (B), enter the number of fellows aņd trainees receiving support under Federal fellowships and/or training grants. Under column (C) enter the number of postdoctorals who are receiving. federally supported research grants. Those remaining postdgctoral appointees receving non-Government support should be entered under column' (D). Of the totul in column (E). enter the column (F) the. number of postdoctorals with foreign citizenship. Under other nonfuculty docioral reseurch stuff. column (G_{i}). repart all dactoral scientists and endineers who are principally involyed in research activities hut who are considered neither postdocloral appointees nor memhers of the regular faculy. On line 2, report the number of women in each category; please note that in each column, data on iine 2 should not exceed the total on line 1 .

2
 other science, resources publications

[^0]:
 Reproductions supplied by EDRS are the best that can be made. *
 from the original document.
 ***)

[^1]: Dečember 1981

[^2]: , 'National Science Foundation, National Patterns of Science and Technology Besources, 1981 (NSF 81-311) (Washington, D C. Supt. of Documents, US. Government Printing Office, 1981).

[^3]: In the absence of a relable RaD cosi index. the gross naluandiproduct (GNP) implicil price deflatur was used to convert current dollars intu constant 1972 dollars The CNP doflatur can only indicate approximate changes in the costrof R\&D pesformance

[^4]: - Department of Education. National Center for Education Statistics. Education IIrectory, 1979-80 (NCES 80-348) (Washington. DC. Supt of Documents. US Government Printing Office). p"28'

[^5]: sFor examples, see Association of American Universilues. The Scientific Instrumentotion Needs of Research Universities, A Report to the NationalScience Foundation (Washingion. D C. June 1980), pp. 21-23; and Frank J. Atelsek and Irene L. Gomberg. Shared Use of Scientific Equipment at Colleges and Universities, Fall 1978. Higher Education Panel Report Number 44 (Washinglon, D.C American Council on Education. November 1979), p. 1.

[^6]: "Based on the,National Science Foundation's Survey of Scientific and Engineering Personnel at Universities "and Colleges, annual series. According to the definition used in NSF's survey of academic S/E emplayment, professional employees of academicinstitutions are those working at a level requiring al least a bachelor's degree Professional personnel include S/E faculty members, posidpctorates, and all other employees in S / E disciplines holding a bachelor's degree or the equivalent. such as research administrators and systems analysts in computer - centers. Note that data for January 1979 were cofllected from doctorate-granting institutions only.

[^7]: 'National Sciencer roundation. US Scientists and Engimeets. 1978 (IJetail/ (Statistical rables) (NSF 80-304) (Washington. I) C p980). table 2. p 5

 Nathonal Science Foundation Employment Attributes of flecent Science and tingineering Graduates [NSF 80-325) (Washangton, DC Supt of Docameñts, US Government Printing Office. 1980). p 9

 Ibrd lables A and B. pp 15-16

[^8]:

[^9]: Valanal Todems of Engineering rask Furce un Fnuinering Eilucallon ul the Nalounal Academs ul Sciences Issues in Eingenex ring Educalun 4 Frumework fickinalysis (Washingtua D C. April 1980), pp 12-16

[^10]: "National Science Foundation, Academic Science but ntists und t.ngineers. January 1980 (Detaled Stalistical I ables) (NSt 81-30-1. Lable B-38, and Research and DeHedoment in todustry. 1978 (Delaled Siatistical Tables) (NSt 80-30-), lables B-31 (Washington, D C , 1980)

[^11]: Depariment of Education, National Center for Education Statıstics. Profections of Educotion Statistics $t 01988$-89 (Washington OC.. Supt of Documents, US Governmeny Prituing Office. April 1980). tahle 33, p.
 100. 100.

[^12]: ${ }^{15}$ Beginning in 1979, the personnel survey questionnaire , requested data on type of activity only in terms of FTE involvement, since this basis of measurement provides a more accurate picture of a scientists or engineer's total activity than did the "primarily employed" concept used in the survey in earlier years Only data on total and R\&D FTE's were requested, thetefore separate data on teaching and "other activaties" are no longer avalable

[^13]: ' National Commission on Research', Research Personnel Yin tissay on Policy (Washington. D C . April 1980). pr 3, 6. 8. 9. 11
 'National Center for Higher Education Management' Systems. Financing at the l.eokling 100 Research Universties, draft of fixecutive Summury (Boulder. Cólorado. April 1981)

[^14]: ""Howard P Tuckman, "Part-ime Faculty Some Suggestons of Pohcy," Chqnge, lanuary/February 1981, 'pp. 8.10

[^15]: :"Department of Eductation, National Center for Education Stapistics, Faculty Salories, Tenuremand Benefits. 1979-80 (Washington, D C. 1981). table C. p. 5 . ${ }^{2}$ National Science Foundation. U.S Scientists and Engineers, 1978. op cit , lable 2, p 4

[^16]: Natıbnal Research Council, Research Excellence Thraugh the Year 2000 The Importance of Maintain a How uf New Faculty intu doudema Researeh A report with recommendations of the Committe on Continuity in Academic Research Performance (Washington. D C., 1979]
 :Atelsek, trank J and Irene L Gomberg. American Council on Education. Higher Education Panel Report Number 52. Recruitment and Retention of Full-time tngineering Faculty, F all 1980 (Washington, D.C . Uctober 1981J, table 1.

[^17]: ${ }^{4}$ Department of Education, National Center for Education Statistücs op cit, table E. p 7, table F. p 8

 Ibad table C . p 5, and Saluries. 「enure, and F ringe Bene fils of t ull- Itme Instructionul r uculty in Institutions of Higher Fiducution, 1975-;6 (NCES $7 \boldsymbol{7}$-318), table B. p 2
 "National Research Councll. Women Scientists in Indusiry und Guvernment (Washingtun. D C. 1980). p 39 National Science Foundation, Choracteristics of Joctoral Scientists and Engineers in the United States 1979 (Delated Staislual 「dbles) (NSF 80-323) (Washington, D C, 1980), table B-6, p 25

[^18]: albid

[^19]: "Based on data collected in the annual surveys of the Department of Education. National Center for Education Statustics in Opening Fall Enrollment in Insututions of Higher Education [Washington, D.C) The 1979 figure is preliminary.

 - "National Science Foundation. Academic Science. RED Funds. Fiscal Year 1979. op cit , pp 7 and 8

[^20]: "National Science Foundation, Academic Science - Scientists and Engineers. January 1980. op' ctl , tables 1 and 4.
 "For, example. see Fred E. Crossland, "Learning to Cope with å Downward Slope." Change. July/August 1980. p 18.
 "The proportion of all 18- to 24-year-plds enrolled in universities and colleges has been stable at about two out of five since 1974, as reported in W. Vance Crant and Leol. Eiden. Digest of Educotion Statistics.' 1980. Department of Education, National Center for Education Statistics (NCES 80-401) (Washington, D C:Supt of Documents. U S Government Printing Office. 1980).p 87.
 "Ibld. p 133. for 1965-66 through 1977-78; the pre--liminary figure for bachelor's degrees awarded in 1978-79 is 921.290 ,

[^21]: 'See Department of Education, Natyonal Center for Education Statistics. Digest of Education Statistics,' 1980 (Washyngton. D.C Supt. of Documents, U.S. Government Printing Qffice), p 144, tuition in private institutions increased by a total of 44 percent over the 1974/78 period: in public institutions the increase was 37 percent In constant dollars, however, tution costs were stable' in private instifutions and dechined by 5 percent in public institutions
 "'Dearman, Nancy B and Valena White Plisko, The. Condition of Educaton. 1979 'Edition. Department of ${ }^{*}$ Education, National Center for Education Statistics (Washangton, D.C Supt of Documents, U.S. Government Printing Office. 1979). p 204.

[^22]: 'For further discussion of the potential effects of these shifts in enrollment patterns, see Carol Frances, "Apocalyptic vs. Strategic Planning." Change, july/August 1980, p. 19.
 'Depariment of Education, National Center for Education Statistics. Digest of Education Stotistics. 1980. op ctt, p. 134.

[^23]: -"Ibid. Á 103
 *"Andrew I Pepin. Fall Finrollment in Higher Educotion. 1978. (NCES 79-37T (Washington, D.C Supt of Documents. U.S. Government Printing Uffice, 1979), p 36

[^24]: *"Nonrestdent Alien Enrollments and Degrees Are Increasing" NCES Bulletin (NCES 80-305) (Washington, D) C.. Depariment of Education. 1980)
 ?

[^25]: * *A further discússion of these problemsis presented in National Association of Forergn Sludent Affairs. The Relevance of U S. Groduate Programs to Foreign Students for Developing Countries (Washingion, 'D.C., April 1979).
 "Nalıonal Science Foundation, Foreign Participation in ('S Science und Engineering Higher Educghon and Labor Markets (NSF 81-316) (Washinglof. D C Supt of Documents, its Government Prinling Office, 1981]

[^26]: - 'Moshman Associates, Inc.

 6400 Goldsboro Road
 Washington, D.C. 20034
 (301) 229-3000

[^27]: 'Westal, Inc.. Assessment of Coverage. Consistency of Reporting and Methodology of the 1973 Graduate Science Student Sopport Sutvey: A Reliability and Validity Study. (Rockville. Md., 1975).

[^28]: SOURCE: NATIOHAL CENTER FOR EDUCATION STATISTICS, DEPARTMENT DF EDUCATION

[^29]: SOURCE: NATA NERE NOT COLLECTED IN FALL 1978.

